
pmMDA 1/45

pmMDA
poor man Model Driven Architecture

Marcel Baumann
Version 1.0.10

Table of Contents
1 Introduction...4
2 Concepts..4
3 Interactive Work Environment..4

3.1 Requirements...5
3.1.1 Tagged Values..5
3.1.2 Properties...5
3.1.3 Cartridges...6
3.1.4 Datatypes..6

4 pmMDA Core..7
4.1 Meta Model ...7
4.2 Extension Mechanisms..7

4.2.1 Templates...7
4.2.2 Stereotypes...8
4.2.3 Tagged Values..8
4.2.4 Datatypes..8
4.2.5 Model Dependencies ...8
4.2.6 Properties...8
4.2.7 Attributes..9

4.3 Persistence...9
4.4 Engine..9
4.5 Cartridges...9

4.5.1 Initialization...10
4.5.2 Validation...10

5 Architecture...11
5.1 XMI 1.2 Mapping..11
5.2 Standard Packages...12

6 Cartridges Overview..13
6.1 Purpose..13
6.2 Cartridge Architecture...13
6.3 Standard Cartridges...13

7 User Interface ...16
7.1 Dialogs...16
7.2 Preferences...16

8 Velocity Templates..16
8.1 Tips and Tricks..16

9 Further Readings...16
10 Business Object Cartridge...17

10.1 Dependencies...17
10.2 Stereotypes...17

2/45 pmMDA

10.3 Tagged Values...18
10.4 Attributes...20
10.5 Properties...21
10.6 Validation Rules..22
10.7 Design ...22

10.7.1 Rules..22
10.7.2 Java Beans..23
10.7.3 Datatype Support..23
10.7.4 Code Generation Tuning..24
10.7.5 Reference Codes..24
10.7.6 Visitor Pattern..24

10.8 History...25
11 Persistence Cartridge...26

11.1 Dependencies...26
11.2 Stereotypes...26
11.3 Tagged Values...26

11.3.1 Persistence..27
11.3.2 Column Type..27

11.4 Attributes...27
11.5 Properties...27
11.6 Validation Rules..28
11.7 Design..28

11.7.1 OJB Configuration...28
11.7.2 Database Definition...30

11.8 History...30
12 CORBA Cartridge...32

12.1 Dependencies...32
12.2 Stereotypes...32
12.3 Tagged Values...32
12.4 Attributes...32
12.5 Properties...33
12.6 Validation Rules..33
12.7 Design..34

12.7.1 IDL Definitions..34
12.7.2 Transformer Classes...34

13 Entreprise Java Bean Cartridge...35
13.1 Dependencies...35
13.2 Stereotypes...35
13.3 Tagged Values...35
13.4 Attributes...36
13.5 Properties...36
13.6 Validation Rules..37

14 Object Explorer...38
14.1 Dependencies...38
14.2 Stereotypes...38
14.3 Tagged Values...38
14.4 Attributes...39
14.5 Properties...39

pmMDA 3/45

14.6 Validation Rules..39
15 Service Cartridge...40

15.1 Dependencies...40
15.2 Stereotypes...40
15.3 Tagged Values ..40
15.4 Properties...40
15.5 Design..40

16 Reference Code Cartridge...41
16.1 Dependencies...41

17 Open Points...42
18 Glossary...43

18.1 Terms...43
18.2 Abbreviations...43

19 References...43

4/45 pmMDA

1 Introduction
The pmMDA application implements a pragmatic approach to realize MDA concepts
in commercial and industrial projects. The platform independent model PIM is
defined with available UML modeling tools1. The model is saved to the standard
compliant XMI format. A user interface is provided to efficiently edit the PSM
attributes. This information can be saved and visualized in the modeling tool. The
pmMDA environment reads the model and generates platform specific model PSM.
The generation of the artifacts is done with pluggable cartridges. This approach is
sometimes called light MDA in the literature.

The generated artifacts use services of open source frameworks to execute on a
specific hardware.

Our architectural framework is the product of years of experience in the development
and deployment of distributed systems. It allows the complexity of such systems to be
kept under control and the technical risks to be minimized. On the basis of this
knowledge developers can create robust multi-tiered applications much quicker and
maintain them at a comparatively low cost. The framework is continuously enhanced
to ensure alignment with state of the industry technologies, and current best practices.

2 Concepts
The application builds on the following assumptions.

• The input model is a UML/MOF compatible model. The XMI standard is used to
exchange information. The system architect can use UML modeling tools such as
ArgoUML, Poseidon or IBM Rose to create a representation of her domain.

• The internal model is optimized to support code generation. Attributes and
relationships are converted to property and indexed properties. Convenience
methods are provided to simplify the development of new code generator
cartridges.

• Cartridges uses the velocity template language to generate source artifacts. The
context of the scripts provide access to the underlying model.

• Velocity templates can be modified to reflect programming styles or frameworks
used in the project. The objects defined in the velocity context and their tagged
values and attributes are documented in this document.

• New cartridges can be written to extend the generator. The cartridges are
pluggable. Dependencies between cartridges, meaning a cartridge uses tagged
values or attributes of another one can be defined.

• Documentation for all mechanisms and architectural decisions are provided. The
source code is extensively documented using JavaDoc.

3 Interactive Work Environment
The pmMDA provides a work environment to manipulate PIM models and add the
information specific to the used cartridge. The cartridge will emit source codes from

1 Preference is given to open source tools such as ArgoUML. Data exchange standards – XMI –
provides interoperability with all major UML tools.

pmMDA 5/45

the PIM and PSM models. The environment enables architects to specify complex
domain models and generate a MOF compatible export.

• The domain classes, associations and attributes should be created with a third party
UML modeling tool. The pmMDA support all tools using XMI as exchange
medium.

• A tree list user interface visualizes the UML model and empowers the user to
efficiently edit the tagged values specific to the used cartridge. The user could
directly manipulate these tagged values in his UML modeling tool but this
approach is cumbersome.

• A code view supports the declaration of all instances for an existing reference code
or hierarchical reference code type. The view is available as an additional panel for
business object instances.

• An attribute view support the edition of business logic associated with attributes.
Each attribute can have an initialization formula, computation rules selected
through context constraints, validation rules. An attribute can also be triggers for
the computation of other attributes. The concepts supported in pmMDA are
documented in the article “Business Object Attributes” [mb-attributes-2003]. The
view is available as an additional panel for business object properties.

3.1 Requirements

3.1.1 Tagged Values
• The tagged values can be sorted alphabetically based on the tag name. Because all

tags have a prefix they are also sorted by cartridge.
An ordering per cartridge is available through prefix conventions.

• Missing tagged values defined in a cartridge can initialized with a default value.
The default value is a constant and not dependent of other tagged values.

• Mo more needed tagged values used previously in a cartridge can automatically be
removed the next time the model is loaded in pmMDA.

• A tag value should have a tag definition stating the name, description, type of
values and default value. If no default value is set the application should transform
values of empty string to null when reading the XMI model. Therefore the default
value is used to specify if null belongs to the range of legal values of the tag.

• A propagate function is provided to apply all the tagged values to all elements with
the same type and name. This mechanism emulates features of the type definition
provided in some development environments. The function can be applied at a
given level in the tree.

3.1.2 Properties
• Each cartridge can define properties used during artifacts generations. The

properties are available to all configured cartridges.

• A mechanism is provided to generate nested definition of properties using a
notation similar to the one provided in Ant.

6/45 pmMDA

• Missing properties defined for a cartridge can be initialized with a default value.

3.1.3 Cartridges
• The configuration of cartridge can be performed without recompiling the

application. The capabilities of the cartridge can be defined in the program or with
the help of a configuration file. The capabilities currently supported are.

• The list of cartridges it depends on.

• The stereotype defined in the cartridge

• The tag values defined in the cartridge with the type and default value

• The list of obsolete tag values defined previously in the cartridge and no
more needed.

• The datatypes known in the cartridge and their mapping to target languages
handled in the cartridge.

3.1.4 Datatypes
Datatypes defines language independent model specific abstractions. They are a build-
in concept in the UML landscape.

Cartridge use mapping information to match existing datatypes to types specific to the
programming languages they generate.

Each model should be build only with datatypes to guarantee that the model is
language independent.

pmMDA 7/45

4 pmMDA Core

4.1 Meta Model
The pmMDA defines a meta model used to describe the business domain entities it
should generate. The meta model is based on the UML standard and provides
abstractions for packages, classes, relations and properties. The designers took care to
define a model compatible with UML 2.0 to simplify conversions between the
pmMDA meta model and the models of the various supported modeling tools. All
specific information are stored as tagged values to guarantee transparent data
exchange with any UML based model.

Convenience methods are provided to ease the development of custom cartridges.

The model supports features specific to the pmMDA application.

• Packages are considered as scoping environments. The hierarchy of sub-packages
as defined in UML has no semantic signification. The package construct is used to
defined attributes global to all classes declared in it.

• The concept of reference code is important to the family of applications we are
developing. A reference code is a set of enumeration values belonging to the same
business domain type. For example the currencies as defined in the ISO standard
define a classical reference code. Implicit support of regular and hierarchical codes
is provided at class level without breaking compatibility with UML.

• Relationships are handled as indexed properties to map easily our models to the
Java bean conventions. Modern programming languages such as Java or C++ do
not provide support for associations and model them with indexed properties.
These fields are implemented in general with the containers classes defined in the
language standard library.
Only aggregation or composition relations are handled as indexed properties
because these types are the only ones realizing the semantic of properties. The
difference between aggregation and composition is who is the owner of the indexed
items. The Java bean standard does not request the framework to finalize owned
objects therefore no difference exists in the pmMDA model.

• Reference codes and hierarchical reference codes are identified with a
corresponding class stereotype. This approach eliminates tedious inheritance or
implementation relationship. It also clearly states that enumeration codes are a
special kind of entities. This solution is UML compliant.

4.2 Extension Mechanisms

4.2.1 Templates
Templates are the mechanism used to generate source artifacts of a PIM model using a
cartridge. The templates are stored in a folder accessible to the users. The content of
the template can be modified for example to reflect the coding guidelines of a project
or add additional artifacts.

The architect modifying the templates should have a working knowledge of the

8/45 pmMDA

underlying template language2.

4.2.2 Stereotypes
An item in a UML element can have at most one stereotype. The pmMDA architecture
supports the definition of stereotypes. Stereotypes can be added to various UML
element such as classes or packages.

The developers of cartridges should use new stereotypes sparingly. The major
drawback of stereotype is that at most one can be defined per entity.

4.2.3 Tagged Values
Tagged values are the standard extension mechanism of the UML models. The
pmMDA architecture supports the definition of new tagged values.

The developers of cartridges should document all new tagged values in details. The
UML environment does not support rich semantic relations between tagged values and
over elements of the models. This restriction is one major reason for the existence of
the pmMDA application.

4.2.4 Datatypes
Datatypes are a standard extension mechanism to define new types in UML models.
Types are defined as an extension to a model and are platform independent. . They do
not belong to a package or have language specific aspects therefore different platforms
can be targeted without modifying the model.

Datatypes should only be used to specify the type of simple or of an indexed property.
It is allowed to use datatypes in tagged values.

The code generators can provide their mapping rules from user defined datatypes to
their representation in the target programming language. The mapping rules are
defined in a XML file for each cartridge.

Default mechanisms are provided to translate a datatype into a type definition of the
target language using the mapping definitions. The translation result is stored in the
associated cartridge attribute.

4.2.5 Model Dependencies
The cartridges extend UML models with stereotypes and tagged values. The model is
a representation of domain models with a strong orientation toward the conventions
adopted in the Java beans framework. Therefore convenience methods are provided in
the MDA model to directly manipulate Java beans related attributes. These methods
are also the Java bean specialization of the MOF/UML model.

Tagged values are used to insure compatibility to MOF models as created in UML
modeling tools.

4.2.6 Properties
Properties are configuration parameters for a cartridge. The user can define custom

2 The actual template language for the delivered cartridges is Velocity.

pmMDA 9/45

values in the application properties configuration file. Each cartridge defines the set of
properties it provides for configuration. The cartridge can define default value for
properties not overwritten by the user.

Naming conventions avoid collision of property names in the configuration file.

4.2.7 Attributes
Attributes are values computed in each cartridge. Each cartridge defines the set of
attributes it provides to its code generation templates and is responsible to compute
them before the template is executed.

Naming conventions avoid collision of attribute names in the MDA model.

Attributes are strings or null values.

4.3 Persistence
The persistence layer uses open source frameworks implementing meta model
standards defined in the object management group OMG. The pmMDA supports XMI
1.0 /UML 1.3 and XMI 1.1 / UML 1.4, implicit support for XMI 1.2 is also provided.
The open source library Novosoft UML3 and MDR – Meta Data Repository – are used
to implement these standards.

Domain models can be defined with UML modeling tools such as ArgoUML and
Poseidon. The development team can also use commercial tools such as Rational
Rose and export their model to a XMI format.

The persistence layer can read all these formats and update the files with the
information added during a pmMDA session.

4.4 Engine
The MDA engine executes the configured cartridges against UML compatible model.
The model implementation defined in pmMDA provides various convenience methods
to simplify the implementation of custom cartridges.

4.5 Cartridges
Custom cartridges implements the cartridge interface. The package provides
mechanisms to publish the required tagged values to the model editor.

The developer is free to implement their own code generation mechanisms. The
application has extensive support for Velocity based code generators.

The cartridge framework provides the following mechanisms.

• A cartridge has a name, a prefix, and a class implementing it. The prefix is used in
the cartridge to qualified all the tagged values and attributes it defines. The prefix
is also used to generate the menu names in the generator framework.

• It has a list of cartridges it depends on. The list is used to load all required
cartridges and to process all their attributes before calling the generation step of the

3 The Novosoft open source project is dead because the company behind it stopped development and
no documentation is available. Projects using the NSUML library are migrating to MDR library,
which is better documented and JMI compliant.

10/45 pmMDA

cartridge.

4.5.1 Initialization
When a new item is created or reseted a set of tagged values are added to it. Similarly
older models can be loaded and new cartridge definitions will trigger the creation of
tags on some of the items. Cartridges could be interested to define reasonable initial
values to the tags based on context information or properties of the item. Separation of
concerns is a design goal and the MDA model is not aware of the cartridge
initialization.

Each cartridge can register a initialization servant to insure reasonable values in all
tags defined in the cartridge. The servant uses the regular property change
mechanisms provided in the Java environment. The following conditions are
guaranteed.

• The servant is called for each added tag.

• All tag values are initialized to their default values as defined the MDA factory.
The initialization is done upon creation of the item or upon loading from a
persistence representation. The servant is called only upon completion of the
initialization of the added tag.

• Tags defined in the cartridges required from a cartridge are initialized before the
cartridge servant is called.

The designer of a cartridge should carefully evaluate the best approach for each tagged
value. In general either a default value should provided or more complex initialization
logic defined in a servant. In other words the default value of a tagged value can be
considered as` a trivial variant of initialization logic4.

The initialization algorithm is implemented as follow.

1. The element is created. Attributes of the element can be set. No tags are defined.

2. The element is initialized using the MDA factory. All defined tags are created for
all registered cartridges. All obsolete tags are removed from the element for all
registered cartridges5.

1. The added tag is initialized with the default value before the servants are called.

2. The addition of a tag triggers a change event in the involved element. The
cartridge factory is a registered listener for these events. The registration as
listener in a new element is performed when the element is initialized.

The element supports the registration of change listeners. The factory manages the list
of interested listeners for all changes.

4.5.2 Validation
A cartridge can define validation rules verifying the consistency and completeness of

4 Initialization logic should no try to overwrite an initialization value. No information is available to
distinguish the case where the user has chosen a value equals to the initialization value. The decision
should build on the fact that a tagged value has null as value.

5 No tags are added to system classes. These classes are standard classes provided in the target
environment and never generated.

pmMDA 11/45

the model for cartridge's purposes. Separation of concerns is a design goal and the
MDA model is not aware of the cartridge validation.

A validation rule has the following characteristics.

• The level of the rule is either error, warning, or informative.

• The kind of the rule specifies if it must be applied each time a property of the class
is changed or as needed in the application to insure the consistency of the model.

• The rule is applied on a class and its properties. The verification code can access
objects known from instances of the class on which the rule is applied.

• The rule returns an optional message with a level and a text helping the user to
identify the reason of the problem.

The framework provides helper classes to register rules in the system. The registration
process define

• The object owning the rules. The cartridge defining the rules is used as owner.

• The class on which the rules should be applied.

5 Architecture
The core engine of the pmMDA provides extension mechanisms to plug-in new
cartridges in the code generator and add capabilities to the meta model. The selected
solution must respect the following assumptions.

• All meta model extensions must be MOF and UML compliant. Available extension
mechanisms are stereotypes and tagged values. A major restriction of stereotype is
at most one stereotype can be defined for an entity.

• Extensions such as reference codes are implemented as convenience methods in the
model but are stored as tagged values.

5.1 XMI 1.2 Mapping
The standard XMI 1.2 and UML 1.4 Java implementation is the MDR library of the
“Net Beans” project. The preferred model format of our application is XMI models
created with this library. Open source UML tools such as “ArgoUML” or commercial
alternative ones such as “Poseidon” use this library.

The format translator must provide answer to the following aspects

• Read a XMI UML model and transform it to the internal core model

• Update the tag values of the model to reflect the expectations of all loaded
cartridges. The update is at least performed when the model is saved. The
description of the items is also updated.

• Save the modified tag values, either added, deleted or modified ones to the
MDR model

• Provide a factory interface to implement more complex operations on the
model and propagate the changes to the MDR model

• Add, delete and rename a property

12/45 pmMDA

• Add, delete, move and rename a classifier either a class or a datatype

• Add, delete and rename a package

The factory approach is used to abstract the operations from the underlying model.
Therefore other libraries, for example NSUML, Rational Rose petal, or Eclipse
ECORE can also be supported. The factory approach also avoid full synchronization
of the internal and the persistent model without contextual information.

5.2 Standard Packages
The described models reference standard packages provided through the Java
development kits, external libraries or commercial frameworks. The application
should avoid adding tagged values on classes belonging to these packages.

pmMDA 13/45

6 Cartridge Factory
The cartridge factory manages all registered cartridges.

6.1 Properties
The cartridge factory provides the following options to control the application. The
options are defined as properties.

• pmmda-should-generate: The property indicates if the model should be validated
before generating artifacts. The default value is true.

7 Cartridges Overview

7.1 Purpose
The pmMDA is delivered with a set of standard cartridges developed and used to
generate mission critical systems.

Architects are free to develop their own cartridges and artifacts templates. The
application provides a pluggable architecture. New cartridges are registered through a
property files. No compilation of the core or new deployment is necessary.

7.2 Cartridge Architecture
A cartridge should provides a set of constructs to smoothly integrate with over ones.

• Cartridge implementation

• The cartridge must be written in Java and implement the cartridge interface. The
interface defines a set of responsibilities the cartridge should provide.

• The name of the cartridge

• The set of cartridges it depends on.

• The list of tags it defines and the list of obsolete tags defined in previous
versions of the cartridge and no more used.

• A set of Velocity templates. The set can be empty.

• The architecture recommends to store the templates in a directory having the
name of the cartridge prefix. This rule is a recommendation only.

• A set of properties used to configure the cartridge.

• These properties should be defined in the application property file.

• The cartridge provides logic to handle situations were not all properties were
defined in the property file. Default values should be implicit and the users
have the right to remove them from their application property file.

• A set of validation rules used to validate a model before the artifacts generation
task is called.

Cartridges should not buffer Velocity templates. The Velocity framework performs
this task better.

14/45 pmMDA

7.3 Standard Cartridges
The cartridges provide solutions for the following design areas.

• The BOG cartridge creates the business object model and the lightweight
representation of business objects. Relationships 1-0..1, 1..N, and N..M are
supported. Together with the business object graph framework the application
performs CRUD operations on graphs of business objects.

• The OJB cartridge realizes object relation mapping with OJB. All configuration
artifacts for the Apache project OJB are created. The schema of the database is also
generated as a set of DDL instructions.

• The CTO cartridge realizes the middleware layer to transfer business object graphs
and lightweight representation to the clients using CORBA. All transformations
rules are generated.

• The OEX cartridge creates a standard explorer user interface displaying and
manipulating business object graphs. Standard views and forms are generated.

• The EJB cartridge creates the infrastructure to create CORBA or EJB session based
server application. The generated servers scale up to thousand users.

Rules must exist where the generated artifacts are created to streamline the packaging
and deployment of the applications.

• Common

• Business object model and lightweight representation. The class source files of
the model are stored in packages corresponding to the packages defined in the
MDA model. The lightweight representations are in the same package or

• Data transfer objects – e.g. CORBA IDL structures – All IDL files are stored in
an IDL directory. The module name is defined in the template and is usually the
company name and a submodule transport.

• The transformers used to transform the business object model into data transfer
objects and vice versa. The class source files are stored in a sub-package of the
MDA package of the model being transformed.

• The common part of the used frameworks realizing complete sets of functions.

• Server

• The CORBA server implementing the business object graph CRUD services.

• Client

• The CORBA wrapper implementing the connection to the CORBA server
providing the business object graph CRUD services.

An example of such a structure is as follow.

• CORBA Artifacts

• CORBA IDL

• /gendir/idl contains the IDL structures definition generated with CTO
cartridge and the IDL server definition generated with EJB cartridge.

pmMDA 15/45

• /gendir/java contains the Java mapping to CORBA IDL created through the
Java IDL compiler. The compiler has options to separate the client files from
the server files. Therefore this distinction is delegated to the Ant file and not
handled in the pmMDA.

• OJB

• /gendir/ojb contains the XML configuration files and the DDL create jobs.
• Java

• net.pmmda.dnm.users contains the business objects of the data model.
• net.pmmda.dnm.users.client

• net.pmmda.dnm.users.lw contains the lightweight business objects of the
data model. As an alternative these classes can be in the same package as
the business objects.

• net.pmmda.dnm.users.transform contains the transformers converting
business object graphs or their lightweight representation into data transfer
objects based on CORBA.

• net.pmmda.dnm.users.server

• net.pmmda.dnm.users.ui contains the user interface classes for the explorer
based user interface.

16/45 pmMDA

8 User Interface
An explorer based user interface is provided to view and edit domain models. The
client is used to efficiently input tagged values. The model with its classes and
properties is often defined with a UML modeling tool.

8.1 Dialogs
The dialogs for MDA elements follow the same structural rules. The current
implementation uses the form layout manager from the “JGoodies” project. The
display and edition of tagged values in done through a common class.

8.2 Preferences
The application provides a preference dialog to tailor the behavior of the application.

• The number of last opened projects available through the file menu is configurable.

• For each defined cartridge the user can decide if the cartridge is loaded or is active.
The dependencies between cartridges are visualized.

9 Velocity Templates

9.1 Tips and Tricks
• Use a velocity plugin for eclipse to simplify the creation and modification of

scripts.

• Complex computations should be programmed in the cartridge. Velocity is not a
programming language but a simplistic template language. Future development
such as support of scripting languages, e.g. Beanshell could remove this restriction.

• Velocity does not update a variable if expression returns null and it is impossible to
affect explicitly null to a variable or to unset it. To avoid logic error set the variable
first to false before evaluation an expression, which can return null.

10 Further Readings
The article Business Object Graphs: A pragmatic approach to MDA describes a
framework to exchange graphs of value data objects between clients and server.

The experience report Lessons Learned in Insurance Project: Successes, Pitfalls and
Enhancements documents how the framework and MDA approaches were used in a
mission critical insurance application successfully deployed.

pmMDA 17/45

11 Business Object Cartridge
The business object cartridge generates the source code for the business object layer
of an application. The generated business object classes follow the Java bean
conventions. The cartridge must have access to all business objects classes defined in
a package. This assumption is reasonable because the classes should anyway be
defined in the UML model.

Convenience extensions are provided for custom constructors, reference codes, and
the visitor pattern. The reference code framework support hierarchical delegation of
reference codes to other managers. The visitor pattern assumes that all node types to
visit are defined in the same package. Please read the user guide of the cartridge for
more details.

The generated source code is compliant with the business object graph framework.
Business objects structures can be manipulated through this framework. The code is
also compliant with the explorer framework. Business object structure can be
visualized with this framework.

The cartridge knows how to handle reference codes. They are handled as a reference
to a external object. Clients of the business objects should only manipulate codes and
never identifiers of code values. This approach considers the reference codes as
business domain enumeration types.

Power users are free to modify or extend the velocity templates to tailor the generated
source codes to the needs of their environment.

11.1 Dependencies
No dependencies to other cartridges exist.

11.2 Stereotypes
The following stereotypes are defined and used in the business object cartridge.

Stereotype Definition
Business object This class stereotype flags the application specific class as a

business object.
Reference code This class stereotype flags the application specific class as a

reference code.
Service This class stereotype flags the application specific class as a

service defining a facade to the application function.
Interface The package stereotype flags the packages containing classes

visible to the clients of the application.

These stereotypes are defined to allow a clean modeling of the business domain. The
hierarchical reference code is not a stereotype because it is too similar to the reference
code.

The interface stereotype as public interface flag embeds multiple meanings.

18/45 pmMDA

• Classes referenced either directly or through transitive closure in a service
specification must belong to interface packages or be system classes.

• Only business classes member of an interface package are made available in the
standard CRUD service.

11.3 Tagged Values
The following tagged values are defined and used in the business object cartridge. The
first group of tags defines Java bean aspects. These semantic meaning of these aspects
is described in the Java bean standard. The second group provides support for indexed
and ordered properties.

The UML standard tags used in the cartridge are documented in the next table.

Tag Default Type Target Definition
persistence FALSC

H
boolean Property (simple,

indexed), class
Flag indicating if the element
is persistent or not.

transient FALSC
H

boolean Property (simple,
indexed)

Flag indicating if the element
is transient or not.

volatile FALSC
H

boolean Property (simple,
indexed)

Flag indicating if the element
is volatile or not.

A dependence rule exists between the class and its properties. The class is persistent if
at least one of its properties is persistent.

The table below documents the cartridge specific tag definition.

Tag Default Type Target Definition
bo-generate FALSC

H
boolean package Flag indicating if the package

should be processed or not.
bo-generate

FALSC
H

Boolean class Flag indicating if class without
MDA stereotypes should be
processed or not.

bo-root null string package If defined the logical root
directory where the Java
artifacts are generated6.

bo-is-root FALSC
H

boolean class Flag indicating if the class is a
root for the bog framework.

6 The logical root directory is a variable mapped to an existing directory in the properties file. If the
variable is not found a warning is issued and the default root directory is used. If not defined the
default root directory specified in the properties file is used.

pmMDA 19/45

Tag Default Type Target Definition
bo-has-cycles FALSE boolean class Flag indicating if the graph

below the root can contain
cycles or is a tree7.

bo-is-
hierarchical8

FALSC
H

boolean class Flag indicating if a reference
code is hierarchical or not.

bo-mode Read-
write

Enumer
ation

property (simple,
indexed)

Specifies if the property is
read, write, or read write.

bo-change-
event

FALSC
H

boolean property (simple,
indexed)

Flag indicating if the property
is changeable.

bo-veto-event FALSC
H

boolean property (simple,
indexed)

Flag indicating if the property
is veto able.

bo-navigable9 string property (simple,
indexed)

Defines the property used to
navigate to the owner.

bo-lightweight FALSC
H

boolean Property (simple,
indexed)

Flag indicating if the property
is in the lightweight class.

bo-container-
class

Array
List

string indexed property The qualified name of the
container classifier (class,
datatype) used to store
indexed properties.

bo-interface-
class10

List

string indexed property The qualified name of the
interface classifier (class,
datatype) used to store
indexed properties.

bo-is-ordered11 FALSC
H

boolean indexed property The container is ordered.

bo-key-class

string indexed property If the property is ordered, the
tag defines the classifier
(class, datatype) of the key.

The enumeration for the business object mode has the following values: READ,
WRITE, READ_WRITE. The value cannot be null.

The class name for the container class should implement the list interface defined in
the utility package.

7 The cycle flag should only be set for classes being data object and with root flag set.
8 The tagged value is only relevant if the class has a reference code stereotype.
9 The property must be read and write to allow the definition of the link to the owning object. The

type of the property must be compliant with the class of the owning objects. If the property is
lightweight one – meaning the property is navigable and lightweight and the property used to
implement the navigation is also lightweight - the lightweight property is always navigable. The
visitors for data object and lightweight data object tree do not traverse the back link of a navigable
property.

10 The interface class should be an interface of the container class.
11 The type of the container must implement the map interface if the tagged value is true.

20/45 pmMDA

If the property is an indexed one, the type of the property defines the items stored in
the container of the property. The following container types are supported to realize
indexed properties. If the indexed property is ordered when the tag bo-key-class is
defined otherwise it is not necessary.

• List, Collection or Array can be used as container type. The storage container can
be an array list, a vector, a linked list or an array. The index in the collection is the
integer primitive type.

• Map or dictionary used as an ordered container type. The storage container can be a
hash map, a hash table or a tree hash map. The index in the map is the configured
tagged value.

11.4 Attributes
Attributes are computed during runtime in the cartridge and are only relevant to the
cartridge. The attributes are available to the code generation templates to simplify the
adequate code generation.

Attribute Type Target Definition
bo-mo-package string package The qualified name of the package containing

the business model type classes.
bo-if-package string package The qualified name of the package containing

the business model type interfaces.
bo-lw-package string package The qualified name of the package containing

the business model type lightweight classes.
bo-mo-class string class The name of the business object type class.
bo-if-class string class The name of the business object type interface.
bo-lw-class string class The name of the business object type

lightweight.
bo-generate boolean class The class should be generated.
bo-vetoable boolean class Flag defining if the class has vetoable

properties.
bo-changeable boolean class Flag defining if the class has changeable

properties.
bo-has-
interface

boolean class Flag indicating if the class has an interface
describing its contract or not.

bo-lightweight boolean package Flag indicating if the package contains at least
one lightweight class.

bo-lightweight boolean class Flag indicating if the class has a lightweight
representation12.

12 A class is lightweight if it contains at least one lightweight attribute or its ancestor is a lightweight
class.

pmMDA 21/45

Attribute Type Target Definition
bo-used-for-
navigation

boolean Property,
indexed
property

Flag indicating if the property is used for
backward navigation as part of a relation with a
back navigation

bo-field-name string property The name of the field name.
bo-container-
class

string Indexed
property

The component name of the container class
used to store indexed properties. If the
associated tag is a datatype the attribute value is
the mapping defined in the configuration.

bo-interface-
class13

string Indexed
property

The component name of the interface class used
to store indexed properties. If the associated tag
is a datatype the attribute value is the mapping
defined in the configuration.

bo-key-class string Indexed
property

The component name of the key class for
ordered properties.

bo-datatype14 string datatype The primitive type or class associated with a
datatype for the Java language.

A class has vetoable or changeable properties if at least one of its children has such
properties. The helper classes to support the associated event propagation are always
declared in the root class of the inheritance tree.

11.5 Properties
The cartridge provides the following options to control the generated code. The
options are defined as properties.

• bo-cartridge.language: The target programming language used to generate the data
object classes. The current supported values are Java-1.4, Java-1.5, C++-9x. The
default value is Java-1.4.

• bo-cartridge.common-root-folder: The root folder defines the folder, where all
Java classes common to server and client are generated.

• bo-cartridge.server-root-folder: The root folder defines the folder, where all Java
classes of the server are generated.

• bo-cartridge.client-root-folder: The root folder defines the folder, where all Java
classes of the client are generated.

• bo-cartridge.model-package-extension: The extension to the package name, where
all business object classes are generated. If not defined the package name is used.

• bo-cartridge.lightweight-package-extension: The extension to the package name,
where all lightweight business object classes are generated. If not defined the

13 The interface class should be an interface of the container class.
14 The datatype is converted to a class or primitive representation based on the cartridge mapping

configuration. It is the responsibility of the cartridge and associated template to differentiate
between primitive types and classes if necessary.

22/45 pmMDA

package name is used.

• bo-cartridge.interface-should-be-generated: If the value is set interfaces are
generated otherwise no interfaces are generated.

• bo-cartridge.interface-package-extension: The extension to the package name,
where all interface business object classes are generated. If not defined the package
name is used.

• bo-cartridge.business-object-class-prefix: The prefix appended to the name of all
generated business object classes.

• bo-cartridge.business-object-class-postfix: The postfix appended to the name of all
generated business object classes.

• bo-cartridge.lightweight-object-class-prefix: The prefix appended to the name of
all generated lightweight business object classes.

• bo-cartridge.lightweight-object-class-postfix: The postfix appended to the name of
all generated lightweight business object classes.

• bo-cartridge.interface-object-class-prefix: The prefix appended to the name of all
generated business object interfaces.

• bo-cartridge.interface-object-class-postfix: The postfix appended to the name of
all generated business object interfaces.

• bo-cartridge.class-field-prefix: The prefix appended to the name of all generated
fields of business object classes.

• bo-cartridge.class-field-postfix: The postfix appended to the name of all generated
fields of business object classes.

11.6 Validation Rules
• The qualified name of a package must be unique in the context of the model.

• The name of a class must be unique in the context of the package.

• The name of a property or an indexed property must be unique in the context of
the class.

• Each package should have a description.

• Each class should have a description.

• Each property should have a description.

11.7 Design

11.7.1 Rules
1. A class of the MDA model is generated if it does not belong to standard or bought

packages. A standard package is member of the name spaces delivered with the
Java environment or is recognized through the tagged value “bo-generate”. The
class must have one of the expected stereotype to be eligible.

2. The business object interface is emitted for all classes with the associated

pmMDA 23/45

stereotype. If the class has no ancestor when the methods of the interface are
emitted. If the class has an ancestor it is assumed the parent class implements the
business object interface.

3. The previous rule requires a special treatment of subclasses with changeable or
vetoable properties. If a class has such a property it must propagate the information
through the inheritance hierarchy. Therefore it is guaranteed that the root class
instantiates the needed helper classes to propagate the events. Naturally only the
root class needs to instantiate the classes15.

4. Data types are never generated because they are primitive types part of the target
programming language.

The cartridge support multiple language targets. Language specific features are all
defined in the Velocity templates. The language selection is performed through
application properties.

11.7.2 Java Beans
The cartridge provides mechanisms to support software development using source
configuration management systems. A new file is only generated if it contains
difference against the existing one.

The cartridge supports all functions defined in the Java bean standard. The generation
is used for business object and lightweight classes.

• Support for the business object stereotype. All classifiers and visibility for the class
and fields are supported.

• Simple and indexed properties with the BeanUtils extensions to support the
collection package. The getter and setter for indexed properties are extended to
support ordered indexed properties.

• Changeable and vetoable properties. Changeable and vetoable features are defined
for each property. These features are implemented with the help of support classes
provided in the J2SE bean package. The behavior respects the bean conventions.

• Default constructors with initialization of fields with primitive types or the
associated wrappers.

• Specialized constructor to initialize fields with parameters values.

• A deep copy method is provided.

The copy method distinguishes between indexed properties and ordered properties.
Care was taken to generated legible and indented source code.

11.7.3 Datatype Support
The cartridge provides sophisticated mechanisms for datatypes. Datatypes are used to
create models independent of the target programming languages. These datatypes
must be mapped to their target primitive or class type in the target language. The
cartridge must provide translations for

15 This rule increases the complexity of the code generator but minimizes the resource consumption
during runtime.

24/45 pmMDA

• All simple and indexed properties which classifiers are datatypes. The cartridge
mapping files is used to translate the datatype to its corresponding type.

• All cartridge specific tag values containing type definitions should also be
translated. This approach provides programming language independence at the
level of cartridge specific tags. Each tag is mapped to the corresponding attribute
containing the translated datatype. The names of the related tag and of attribute are
the same.

The mapping of datatypes to their associated classifiers is a function with two
parameters. The first parameter is the target language and the second is datatype name.
The implementation assumes that the mapping does not change during the generation
of artifacts. Updates on mappings without restarting the application is supported in the
application framework.

11.7.4 Code Generation Tuning
There are several possibilities to fine-tune the appearance of the generated Java source
code. Among them are the creation of accessor methods for properties, the type of the
container for indexed properties.

• Accessor methods: The accessor methods for attributes are generated automatically.
If the attribute has a multiplicity of 1..1 or 0..1, a setter and a getter are created. For
attributes with a finite multiplicity, an array is generated, and the accessor methods
include setter and a getter with an index parameter, an add and a remove. For an
unbounded multiplicity, a collection is generated and the appropriate add and
remove methods.

• Modifying templates: More advanced hand tailoring of the generated code is
possible if you modify the code generation templates.

• Selective reverse engineering: Generated methods and fields can be marked with a
JavaDoc tag to hinder their addition to the model when performing reverse
engineering.

11.7.5 Reference Codes
The generated Java beans have extensive support for reference codes and hierarchical
reference codes.

The cartridge provides a user interface to define the values of reference codes and
define programming constants for the value unique codes.

11.7.6 Visitor Pattern
The visitor pattern is transparently provided in all generated Java beans. The visitor
pattern is used to traverse a arbitrary tree or graph of Java bean instances.
Convenience classes are provided to implement simple visitors efficiently with the
help of the functor pattern.

The implemented visitor is a depth first algorithm. It provides a property indicating
the current depth in the traversal. These two characteristics are the blocks to define
various sophisticated visitors and functors collecting state information when
traversing a graph of business objects or a graph of lightweight business objects.

pmMDA 25/45

The generated pattern is the variant being embedded in the business object classes.
Other variants could be generated by modifying the code generation templates.

11.8 History
New users of the framework requested a major extension of the data object concepts.
Instead of supporting trees of data objects they now request also graphs of data
objects. Graphs contains cycles and must be handled appropriately. The visitors were
extended to handle correctly graphs. A new tag was added to state that a set of data
object instances are composed as trees or graphs.

Properties have the transient flag indicating if they are persistent or transmitted over
the wire. Aggregations should be extended to support the same flag. Therefore a class
is transient if all its properties and aggregations are transient.

The UML standard version 1.5 defines a standard tag persistence. The tag can be
applied to associations, attributes and classifiers – class, interface, data type -.
Therefore the following decisions are implemented.

• Persistence is modeled with the tag persistence. The type of the tag is boolean.

• The value of the tag should be coherent with the value of the transient constraint.

• Cartridge specific tags modeling persistence are obsolete and removed. The DOG
cartridge is responsible to define the tag and default value.

26/45 pmMDA

12 Persistence Cartridge
The persistence cartridge generates the configuration files for the OJB Jakarta
persistence layer. This layer is an object to relational mapping library solving the
impedance mismatch problem.

Convenience extensions are provided for the creation of the database with DDL
statements. The reference integrity rules for the database are also generated. Foreign
keys used to link to business objects or reference codes are protected through
corresponding integrity rules. Indexes on primary and foreign keys are generated to
increase retrieval performance.

12.1 Dependencies
The persistence cartridge OJB requests the business object cartridge BO.

12.2 Stereotypes
No new stereotypes are defined in the OJB persistence cartridge.

12.3 Tagged Values
The following tagged values are defined and used in the persistence cartridge.

Tag Default Type Target Definition
orm-schema null String package Name of the database schema.
orm-table-name null String class Name of the table containing

instances of the class.
orm-column-
name

null String Property,
indexed
property

Name of the column
containing the property
values16.

orm-column-type null String property JDBC type of the property
orm-column-size null Decimal property Size of the JDBC type if

relevant17.
orm-is-primary FALSC

H
boolean property Flag indicating if the property

is part of the primary key.
orm-can-be-null18 FALSC

H
boolean property Flag indicating if the property

can have null values.
orm-order-by null Enumer

ation
indexed
property

Flag indicating if result sets
should be ordered with this
property. The value can be
null.

The schema name is the identifier of the logical database in which the tables are
created. The schema is used as prefix to the table name for all SQL statements. The

16 For an indexed property the column contains the foreign key to the referenced entity.
17 If two values are required the first value is defined before the decimal point and the second value

after.
18 If the property is part of the primary key, it cannot be null.

pmMDA 27/45

point is automatically generated.

The enumeration for the ordered by has the following values: ASC, DESC. The value
can be null.

12.3.1 Persistence
A property is persistent if the standard UML persistence tag is set and if the transient
flag is set to false. A class is persistent if at least one property is persistent. A
persistent property cannot be volatile or transient.

A directed relation is persistent if its end class is persistent. It is the responsibility of
the code template to generate the foreign key columns and define the associated
access visibility for OJB framework. If the relation is mandatory the foreign key
column can be defined as not null otherwise null values are legal.

12.3.2 Column Type
If the property has a tag “orm-column-type” value it is used. If no value is specified
the mapping rules defined in the cartridge XML configuration is used. The XML
configuration can provide rules for the mapping of datatypes to various target
languages such as JDBC or SQL.

12.4 Attributes
Attributes are computed during runtime in the cartridge. The attributes are available to
the code generation templates to simplify the adequate code generation.

Attribute Type Target Definition
orm-table-
name

String class The name of the table containing instances of the
class.

orm-column-
name

String property The name of the column containing values of the
property.

orm-type-sql String classifier The attribute for the classifier representation for
the SQL language

orm-type-jdbc String classifier The attribute for the classifier representation for
the JDBC language

The type of the column is not an attribute. The reason is that each database has its own
conventions and extensions. Therefore only the specific template knows which SQL
type is the optimal one.

12.5 Properties
The cartridge provides the following options to control the generated code. The
options are defined as properties.

• orm-cartridge.root-folder: The root folder defines the folder, where all OJB
configuration files are generated.

28/45 pmMDA

• orm-cartridge.database: The name of the database type in which the objects will
be saved. The following database are supported: PostgresSQL, MySQL, DB2,
Cloudscape, Torque. The torque type is used to generate a Torque persistence
XML file. This file can be processed with TORQUE to generate various database
definition files.

• orm-cartridge.orm: The name of the object relational database mapper tool used to
connect the object oriented programming language with the relational database.

• orm-cartridge.table-prefix: The prefix of all table names created in the database.

• orm-cartridge.table-postfix: The prefix of all table names created in the database.

• orm-cartridge.column-prefix: The prefix of all column names created in the
database.

• orm-cartridge.column-postfix: The prefix of all column names created in the
database.

• orm-cartridge.generate-fk-index: Flag indicating if indexes are generated for all
foreign keys defined in the schema. The default value is false.

• orm-cartridge.generate-constraints: Flag indicating if constraints are generated for
the database. The default is false.

• orm-cartridge.inheritance defines how inheritance structures are mapped to the
database structure. The values are join – all classes are stored in the same table -,
extend – each class has a table with only the attributes of the class -, expand – each
class has a table with all its attributes and the ones of its ancestors-. The default
value is expand.

• orm-cartridge.ddl: The property is extended with the database name it should
defined. The value is the template file used to generate the data definition of the
database. The legal values for database are the ones defined in the database
property.

• orm-cartridge.ddl-integrity: The property is extended with the database name it
should defined. The value is the template file used to generate the data definition of
all integrity rules of the database. The legal values for database are the ones defined
in the database property.

• orm-cartridge.store-reference-code-mode: The property defines how reference
codes should be stored in the database. The legal values are regular, views, single-
table.

12.6 Validation Rules
The validation rules are only applied to persistent beans and properties.

• The bean must have a table name.

• The property must have a JDBC type if the type of the property is not a datatype. If
the type is a datatype the cartridge assumes that the datatype mapping rule in the
cartridge property contains the expected information therefore no check is
performed.

• If the type is String it must have a length, otherwise the length should be zero.

pmMDA 29/45

12.7 Design

12.7.1 OJB Configuration
The persistence cartridge cartridge writes the XML repository file in the format
expected from the open source tool OJB. This file can be read from the persistence
layer without editing it before.

The cartridge has only one complex algorithm. It must extract from the business
object model and the available tagged values all relationships between objects and
map them to OJB constructs. The following rules are applied.

• 1-1 Relation: The relation is defined as a forward relation. The foreign keys to
connect the tables are declared in the owning table. This mechanism support
multiple relationships to the same table. The insertion order is bottom-up, first the
owned entities, second the owning entities defined for 1-0..N relations.

• 1-0..1 Relation: The relation is defined as a forward relation. The foreign keys to
connect the tables are declared in the owning table. This mechanism support
multiple relationships to the same table. The insertion order is bottom-up, first the
owned entities, second the owning entities.

• 1-0..N Relation: The relation is defined as a backward relation. The foreign keys to
connect the tables are declared in the owned table. The foreign key columns are
optional. This mechanism support multiple relationships to the same table. The
insertion order is top-down, first the owning entities, second the owned entities.

• N..M Relation: The relation is defined through a correlation table and two 1 to N
relations. The rules to create the columns containing foreign keys are derived from
the above ones.

• Composition: Composition relationships are mapped to an integrity rule requesting
a cascaded delete.

• Aggregation: The application is responsible to delete business objects no more
referenced in aggregations if necessary.

The list of all classes having a simple or an indexed property to a class can be
retrieved from the model class. The name of the foreign key column is the table name
of the owning class concatenated with the name of the property.

The code generation needs more concrete mapping rules.

• 1-0..1 property called attribute from an owner class.

• The name of the attribute in the table is defined in a tagged value.

• The type of the attribute in the table is defined in a tagged value.

• The mandatory flag of the attribute is defined in a tagged value.

• 1-0..1 and 1-1 relation called relation from an owner class to an owned class.

• The name of the relation in the table is the name of the property in upper case.

• The property in java is called relation with a type owned class. The property is
defined in the owner class.

30/45 pmMDA

• The OJB repository contains an anonymous field descriptor relation-handle of
type Id-Type and a reference descriptor called reference pointing to reference
Handle. Both descriptors are defined in the owner class.

• The database definition contains a field REFERENCE_FK of type ID-TYPE.
The field can be null if the relation is optional otherwise not.

• 1-0..N relation called relation from an owner class to an owned class.

• The name of the relation in the table of the owned is the name of the owner table
and the name of the relation.

• The indexed property in Java is called relation with a type owned class. The
property is defined in the owner class.

• The OJB repository contains an anonymous field descriptor owner-relation-
handle of type Id-Type defined in the owned class. A reverse collection
descriptor relation of type owned is defined in the owner class.

• The database definition contains a field OWNER_RELATION_FK of type
ID_TYPE. The field can be null if the relation is optional otherwise not.

12.7.2 Database Definition
The database definition is a mapping between the model to the relational world. Each
primitive property is mapped to one column in the table. Type transformations are
based on JDBC conventions. The primary key is always the identifier declared for all
persistent business object class. Property referencing other business object classes are
transformed into foreign key references to the referenced instances.

The foreign keys are generated as defined in the chapter how aggregations are mapped
to database foreign relations.

Referential integrity rules are generated for all relations to insure consistency at
database level. Restriction for deletion is created for 1 to 1 and 1 to N relationships.

The following mapping conventions are available.

DB2 SQL-Server Oracle MySQL PostgreSQL
boolean Bit Byte Boolean Boolean
integer Int Number Int Int
float Float, real Number Float Numeric
currency Money N/A N/A money
String(fixed) Char Char Char char
String(variab
le)

Varchar Varchar,
varchar2

Varchar Varchar

Binary
object

Varbinary,
image

Long Raw Blob, Text Binary,
Varbinary

pmMDA 31/45

12.8 History
The initial version of the persistence cartridge used the Apache OJB project as O/R
mapping layer. Users requested support of the hibernate O/R mapping layer because
this layer has a huge market penetration. Due to the fact that hibernate is also the
reference used to define the forthcoming standard EJB 3.0 the decision to support
hibernate was quite natural. An initial analysis shows that the following areas must be
solved.

• The extend inheritance mode was added to better support hibernate and support the
better stability of this feature in OJB.

• The concept of schema needed to be extended. Not only is the schema used as
prefix of table names but also to distinguish the mapping files of a set of classes to
a set of tables. The cartridge manages one mapping file per schema name. Such a
schema can be used in more than one package.

• Mapping of one to one and one to many relationships. To reflect the programming
language concepts only directed relationships are supported.

• Mapping of single property types to their equivalent representation in the mapping
tools.

• Mechanisms to declare additional structures such as indexes, identifier sequences,
relationships in the underlying database and integrity rules.

32/45 pmMDA

13 CORBA Cartridge
The CORBA cartridges generates the IDL definition files for all business object
classes transmitted between the client and the server applications. Null values are
handled for older CORBA versions.

Convenience extensions are provided to transform graphs of business objects into
their CORBA representation and vice-versa. The CORBA cartridge needs the business
object cartridge. The CORBA cartridge role is to generate transfer object for all
business objects and their lightweight representation, which should be sent over the
wire.

The cartridge generates one IDL declaration file for each Java class being
transmittable. All transmittable attributes and aggregations are generated as part of
this file. If an attribute contains another business object the include declaration is also
generated. The following attributes are transmitted.

• All properties and indexed properties of a business object not being transient are
transmitted.

• All properties and indexed properties of a lightweight business object not being
transient are transmitted.

• All structures are generated as value types to streamline the transmission. Support
for null values for primitive types are provided.

This approach respect the semantic of the transient keyword in the Java language and
guarantees interoperability with other client server middleware such as J2EE.

13.1 Dependencies
The CORBA cartridge CTO requests the business object cartridge BO.

13.2 Stereotypes
No new stereotypes are defined in the CORBA cartridge.

13.3 Tagged Values
The following tagged values are defined and used in the persistence cartridge.

Tag Default Type Target Definition
cto-package-idl String Package Name of the IDL package

name.

All attributes of the business objects not being transient are added to the transfer
objects.

13.4 Attributes
Attributes are computed during runtime in the cartridge and are only relevant to the
cartridge. The attributes are available to the code generation templates to simplify the
adequate code generation.

pmMDA 33/45

Attribute Type Target Definition
cto-bo2dto-
package

String package The qualified name of the package containing
the transformers from business objects to
transfer objects are generated.

cto-lw2dto-
package

String package The qualified name of the package containing
the transformer from lightweight objects to
transfer objects are generated.

cto-bo2to-class String class The name of the translator class for business
objects.

cto-lw2to-class String class The name of the translator class for lightweight
objects.

cto-mo-class String class The name of the business object IDL structure,
and the name of the file containing it.

cto-lw-class String class The name of the lightweight object IDL
structure, and the name of the file containing it.

cto-idl-type String Property,
indexed
property

The IDL type compatible with the UML model
type.

The algorithm to create the name of the translator class is coded in the cartridge. Until
now no requirements were identified requesting a more flexible approach.

13.5 Properties
The cartridge provides the following options to control the generated code. The
options are defined as properties.

• cto-cartridge.idl-root-folder: The IDL root folder defines the folder, where all data
transfer object definitions as CORBA IDL files are generated.

• cto-cartridge.java-root-folder: The root folder defines the folder, where all Java
transformer definition are generated.

• cto-cartridge.idl-prefix: The prefix of all table names created in the database.

• cto-cartridge.idl-postfix: The prefix of all table names created in the database

13.6 Validation Rules
The validation rules are only applied to beans an properties being transfered over
CORBA.

• The property must have an IDL type.

• The bean must have an IDL structure and file name.

• If the bean is lightweight it must have an lightweight IDL structure and file name.

34/45 pmMDA

13.7 Design
The cartridge generates the IDL declaration of the types to transfer and the
transformation methods to convert a data object graph into an IDL structure and vice-
versa.

A major design decision is that foreign keys are not transferred and therefore not part
of the CORBA structures. The transformation methods uses the bean setter and getter
to update the Java objects attributes. Therefore the foreign keys are set through the
logic embedded in the setter methods.

13.7.1 IDL Definitions
The mapping of data object graphs defined in Java to CORBA structure is straight
forward because both languages are object-oriented. To simplify the structure of IDL
description the following conventions are used.

• CORBA strings are dynamic and directly map to Java strings

• Forward references of business objects are mapped to a sequence of the CORBA
representation of the referenced type. This approach elegantly solves the problems
with optional references.

• Backward references of business objects are mapped to a sequence of the CORBA
representation of the referenced type. This approach elegantly solves the problems
with optional references.

13.7.2 Transformer Classes
The transformers are responsible to translate a graph of business objects or of
lightweight objects into their CORBA representation. The following principles are
used.

• Business object or lightweight object graphs are traversed with the help of
generated traversal algorithms. The same mechanism is used for the reverse
transformation.

• The transformer provides factory methods to create the CORBA transfer object
associated with the business model. Similar methods are provided to create the
associated business model objects based on the transfer object.

• The cartridge provides the conversion rules for types which are not business
objects. Support is provided to handle null references of Java types. CORBA
structures are provided for major types and their null values. Each structure
contains a field for the value to transfer and a flag indicating if the value is defined.
If no value is defined the structure contains a zero value for the type.

pmMDA 35/45

14 Enterprise Java Bean Cartridge
The enterprise Java bean cartridge provides all J2EE artifacts.

The server interface for the business object graph is generated for the CORBA legacy
interface and for the J2EE session bean interface. A server interface is generated for
each package containing business objects. The interface is either a CORBA server or a
stateless session bean.

• Each root object type declared in the business object graph cartridge has the
expected services defined in the framework

• Retrieve a graph of business objects where the root is of the defined type. The
parameters are an identifier and a constraint string. Both are optional.

• Store a graph of business objects where the root is of the defined type. The
parameter is the root of the business object graph.

• Remove a graph of business objects where the root is of the defined type. The
parameter is the identifier of the root object.

• Retrieve a graph of lightweight objects where the root is of the defined type. The
parameters are an identifier and a constraint string. Both are optional.

• Services are provided for the reference code manager to transfer a reference code
type to the client.

• Checks if a set of reference code types have newer versions available. Each
request defines the class name of the reference code and its timestamp. The
answer specifies if a new version exists or not.

• Retrieve a set of reference code types, either hierarchical ones or regular ones.
Each element contains the class name of the reference code, its timestamp, a
flag indicating if it is hierarchical or not and the set of values.

The server implementation retrieves the subsystems it depends on through the locator
pattern.

A server is only generated if at least one root object with the data object stereotype is
declared in the package.

14.1 Dependencies
The CORBA cartridge EJB requests the business object cartridge BO and the CORBA
transfer object cartridge CTO.

14.2 Stereotypes
To be written.

14.3 Tagged Values
The following tagged values are defined and used in the persistence cartridge.

36/45 pmMDA

Tag Default Type Target Definition
ejb-server-name String Package Name of the server providing the

interface for the framework.

The server provides the services requested in the business object graph framework and
the associated reference code manager.

14.4 Attributes
Attributes are computed during runtime in the cartridge and are only relevant to the
cartridge. The attributes are available to the code generation templates to simplify the
adequate code generation.

Attribute Type Target Definition
ejb-server-
package

String package The qualified name of the package containing
the server specific classes.

ejb-client-
package

String package The qualified name of the package containing
the client specific classes.

14.5 Properties
The cartridge provides the following options to control the generated code. The
options are defined as properties.

• ejb-cartridge.generate-corba: If the value is set CORBA server interfaces and
client and server side implementation are generated for legacy applications and
other programming languages, otherwise no CORBA artifacts are generated.

• ejb-cartridge.server-corba-root-folder: The root folder defines the folder, where all
Java classes of the CORBA server are generated. If the key is undefined the value
is bo-cartridge.server-root-folder is used.

• ejb-cartridge.client-corba-root-folder: The root folder defines the folder, where all
Java classes of the CORBA client are generated. If the key is undefined the value is
bo-cartridge.client-root-folder is used.

• ejb-cartridge.generate-bean: If the value is set session beans and deployment
descriptors are generated.

• ejb-cartridge.server-j2ee-root-folder: The root folder defines the folder, where all
Java classes of the J2EE server are generated. If the key is undefined the value is
bo-cartridge.server-root-folder is used.

• ejb-cartridge.client-j2ee-root-folder: The root folder defines the folder, where all
Java classes of the J2EE client are generated. If the key is undefined the value is
bo-cartridge.client-root-folder is used.

• ejb-cartridge.common-j2ee-root-folder: The root folder defines the folder, where
all Java classes of the J2EE client are generated. If the key is undefined the value is
bo-cartridge.common-root-folder is used.

pmMDA 37/45

• ejb-cartridge.server-package-extension: The extension to the package name, where
all client related classes are generated. If not defined the package name is used.

• ejb-cartridge.client-package-extension: The extension to the package name, where
all server related classes are generated. If not defined the package name is used.

• ejb-cartridge.server-locator-classname: The qualified name of the locator class in
the application where the session bean is deployed. The locator is lazy instantiated
when a session bean instantiated in the application.

14.6 Validation Rules
• To be written

38/45 pmMDA

15 Object Explorer
The object explorer provides a simple navigator user interface with a left pane
displaying a tree of all lightweight business objects and a right pane displaying a list
of the corresponding business objects. The attributes shown in the list can be
parametrized. The explorer user interface uses a sophisticated declarative framework.
This framework empowers developers to create such interfaces with minimum effort.

Actions are provided to display a view of all simple properties of a business object
and edit it, add a new business object, insert one before another one and remove and
existing one.

The user interface is configured through a template generated description of the
properties and relations between business objects. The explorer framework uses this
description to build the user interface and to control its behavior. The configuration
defines the following characteristics.

• The business object types displayed in the user interface with their interface,
lightweight and regular class implementation.

• The relations between business objects. Relations to classes which are not business
objects are never visualized in the navigator. The user interface is build so that no
declaration order of the interface descriptors is requesting.

• The fields displayed in the table model on the right panel in the explorer
framework.

• The icon selector of the displayed items in the navigator.

• The view used to show and edit the properties of the business object instance.

15.1 Dependencies
The object explorer cartridge OEX requests the business object cartridge BO. The
following information are in particular used.

• The rich client user interface classes are generated only if the flag “should be
generated” of the business object cartridge is true.

• The root directory where the rich client classes are generated is the one defined in
the business object cartridge.

The type factory mapping the lightweight nodes to the heavy classes is only generated
if at least one business object has the lightweight flag set in the package.

15.2 Stereotypes
No new stereotypes are defined in the OEX object explorer cartridge.

15.3 Tagged Values
The following tagged values are defined and used in the persistence cartridge.

Tag Default Type Target Definition
oex-view-class null String class The class of the property view

to display the business object.

pmMDA 39/45

Tag Default Type Target Definition
oex-visible FALSC

H
boolean property,

indexed property
Flag indicating if the property
is visible in the table view.

oex-is-name
FALSC

H

boolean property Flag indicating if property is
used for the name of the
object in the navigator.

The flag defines if the simple property is visible in the table view or in the navigator
view. If the type of the property is a business object it is displayed in the navigator
view, otherwise it is displayed in the table view. All simple properties are always
accessible in the dialog view used to edit the business object.

The flag also defines if the indexed property is visible in the navigator view.

15.4 Attributes
Attributes are computed during runtime in the cartridge and are only relevant to the
cartridge. The attributes are available to the code generation templates to simplify the
adequate code generation.

Attribute Type Target Definition
oex-rich-client-
package

String package The qualified name of the package containing the
user interface classes for the rich client.

15.5 Properties
The cartridge provides the following options to control the generated code. The
options are defined as properties.

• oex-cartridge.rich-client-package-extension: The extension to the package name,
where all rich client related classes are generated. If not defined the package name
is used.

• oex-cartridge.rich-client-folder: The root folder defines the folder, where all Java
classes of the rich client are generated. If the key is undefined the value is bo-
cartridge.client-root-folder is used.

15.6 Validation Rules
• To be written

40/45 pmMDA

16 Service Cartridge
The service cartridge generates services for an application. The features defined in the
service oriented architecture approach are provided through the cartridge.

The cartridge uses the web services standard to implement services. These services are
accessible from various programming languages. The services and associated
parameters are described using WSDL syntax.

16.1 Dependencies
No dependencies exist to other cartridges.

16.2 Stereotypes
The following stereotypes are defined and used in the business object cartridge.

Stereotype Definition
Service This class stereotype flags the application specific class as a

service.

16.3 Tagged Values

16.4 Properties

16.5 Design
The WSDL service description is used to generate Java, C++ and C compliant client
or server interfaces. The Java interfaces are generated using the Apache open source
project Axis. The C and C++ interfaces are generated using the gSOAP interfaces.

pmMDA 41/45

17 Reference Code Cartridge
Reference code types are supported in the data object graph cartridge. The designer
should have support to defines the values of a reference code type. The values can be
stored in a database, a serialized file or as program constants.

The constant definition is stored in a XML file. This file can be edited with an XML
editor or with the provided editor.

17.1 Dependencies

42/45 pmMDA

18 Open Points
The following aspects are still open.

• The project needs a tool for defining and tracking requirements. Which one should
we use?

• The project needs a defect tracking system. A possible solution is to register the
project in an open source factory and uses their defect tracking system.

• Is it possible to merge our pmMDA tool with other open source MDA tools?

pmMDA 43/45

19 Glossary

19.1 Terms
Component Name The name of the component without its package information.

Qualified Name The name of the component with its package information.

19.2 Abbreviations
IDL Interface Description Language

ISO International Standard Organization

JDK Java Development Kit

JRE Java Runtime Engine

MDA Model Driven Architecture

MOF Meta-Object Facility

OMG Object Management Group

PIM Platform Independent Model

PSM Platform Specific Model

UML Unified Modeling Language

USDP Unified Software Development Process

20 References
The framework could only be realized with the help of a set of wonderful open source
projects. We are grateful to the Apache foundation and the Jakarta project for their
powerful applications and libraries.

ArgoUML UML modeling tool
http://argouml.tigris.org

BeanUtils manipulation library for Java beans
http://jakarta.apache.org/commons/beanutils

DocCheck quality insurance for detailed design documentation
http://java.sun.com

Eclipse Integrated development environment
http://www.eclipse.org

JDK 1.4 Java development kit 1.4
http://java.sun.com

OJB Object Java Bridge: O/R mapping tool
http://db.apache.org/ojb

Poseidon UML modeling tool
http://www.gentleware.com

Velocity code generation template engine

http://argouml.tigris.org/
http://www.gentleware.com/
http://db.apache.org/ojb
http://java.sun.com/
http://www.eclipse.org/
http://java.sun.com/
http://jakarta.apache.org/commons/beanutils

44/45 pmMDA

http://jakarta.apache.org/velocity

http://jakarta.apache.org/velocity

pmMDA 45/45

Bibliography
mb-attributes-2003: Marcel Baumann, Business Object Derived Attributes, 2003

	1 Introduction
	2 Concepts
	3 Interactive Work Environment
	3.1 Requirements
	3.1.1 Tagged Values
	3.1.2 Properties
	3.1.3 Cartridges
	3.1.4 Datatypes

	4 pmMDA Core
	4.1 Meta Model
	4.2 Extension Mechanisms
	4.2.1 Templates
	4.2.2 Stereotypes
	4.2.3 Tagged Values
	4.2.4 Datatypes
	4.2.5 Model Dependencies
	4.2.6 Properties
	4.2.7 Attributes

	4.3 Persistence
	4.4 Engine
	4.5 Cartridges
	4.5.1 Initialization
	4.5.2 Validation

	5 Architecture
	5.1 XMI 1.2 Mapping
	5.2 Standard Packages

	6 Cartridge Factory
	6.1 Properties

	7 Cartridges Overview
	7.1 Purpose
	7.2 Cartridge Architecture
	7.3 Standard Cartridges

	8 User Interface
	8.1 Dialogs
	8.2 Preferences

	9 Velocity Templates
	9.1 Tips and Tricks

	10 Further Readings
	11 Business Object Cartridge
	11.1 Dependencies
	11.2 Stereotypes
	11.3 Tagged Values
	11.4 Attributes
	11.5 Properties
	11.6 Validation Rules
	11.7 Design
	11.7.1 Rules
	11.7.2 Java Beans
	11.7.3 Datatype Support
	11.7.4 Code Generation Tuning
	11.7.5 Reference Codes
	11.7.6 Visitor Pattern

	11.8 History

	12 Persistence Cartridge
	12.1 Dependencies
	12.2 Stereotypes
	12.3 Tagged Values
	12.3.1 Persistence
	12.3.2 Column Type

	12.4 Attributes
	12.5 Properties
	12.6 Validation Rules
	12.7 Design
	12.7.1 OJB Configuration
	12.7.2 Database Definition

	12.8 History

	13 CORBA Cartridge
	13.1 Dependencies
	13.2 Stereotypes
	13.3 Tagged Values
	13.4 Attributes
	13.5 Properties
	13.6 Validation Rules
	13.7 Design
	13.7.1 IDL Definitions
	13.7.2 Transformer Classes

	14 Enterprise Java Bean Cartridge
	14.1 Dependencies
	14.2 Stereotypes
	14.3 Tagged Values
	14.4 Attributes
	14.5 Properties
	14.6 Validation Rules

	15 Object Explorer
	15.1 Dependencies
	15.2 Stereotypes
	15.3 Tagged Values
	15.4 Attributes
	15.5 Properties
	15.6 Validation Rules

	16 Service Cartridge
	16.1 Dependencies
	16.2 Stereotypes
	16.3 Tagged Values
	16.4 Properties
	16.5 Design

	17 Reference Code Cartridge
	17.1 Dependencies

	18 Open Points
	19 Glossary
	19.1 Terms
	19.2 Abbreviations

	20 References

