
Explorer Framework 1/8

Explorer Framework
Tree List Declarative User Interface

Marcel Baumann
Version 1.0.1

Table of Contents
1 Introduction...2
2 Concepts..2

2.1 Declarative Model ..3
2.1.1 Naming Conventions...4
2.1.2 Generic Dialogs..4

2.2 Runtime Engine...5
2.2.1 Data Access Rules..5
2.2.2 UI Node Type ..6
2.2.3 Lightweight Object Handler...6

3 Architecture...6
3.1 Context Menus...7

4 Cookbook..7
5 History...8

2/8 Explorer Framework

1 Introduction
Complex client server application often needs simple clients to visualize and
manipulate application and administrative information. The structure of the data is
almost always of hierarchical nature. The description of the entities and their attributes
is documented in a UML diagram and accessible through a XMI interface.

The explorer framework was developed to easily create simple explorer based user
interface displaying hierarchical data. The goals of the framework are

• Create complete but simple explorer based user interface with minimum costs.

• The user interface do not need to support sophisticated graphical components or be
especially fast or flexible.

• The tools based on the explorer framework are modified during the life cycle of the
project. Modifications of the underlying data model should be propagated to the
client with minimal source code edition.

The explorer tries to implement sound ergonomic rules.

1. What does the software look like to a non-technical user who has never seen it
before?

2. Is there any screen in the user interface that is a dead end, without giving guidance
further into the system?

3. The requirement that end-users read documentation is a sign of UI design failure. Is
the explorer UI design a failure?

4. For technical tasks that do require documentation, do they fail to mention critical
defaults?

5. Does the project welcome and respond to usability feedback from non-expert
users?

6. And, most importantly of all... do the framework allow the users the precious
luxury of ignorance?

2 Concepts
The central concept of the explorer framework is the declarative nature how its model
is described and connected to the user interface. Current toolboxes concentrate their
effort to develop fancy wizards or declaratively describe the user interface using
XML. But the connection of the user interface to the business model is still a manual
and cumbersome activity. This task must be executed each time the model changes.

The approach of the explorer framework is quite different and borrow its concepts
from the MDA movement. The domain model is described as a platform independent
model PIM. Cartridges generate most of the code of the application. Each time the
model is updated, the code generator is triggered and a new user interface is created.
The process of developing a user interface is different when using wizard. Once you
ran the wizard you start to extend the code it created. From now you can never again
run the wizard to reflect the changes of the model.

The explorer framework borrows its terminology of standard client server framework.

Explorer Framework 3/8

One of this framework is described in “Business Object Graphs: A pragmatic
approach to MDA”. The explorer has a left pane, which displays a hierarchical tree
view of the business objects being edited. The right pane displays the list of children
of the currently selected node. Custom views can be added in the right pane, such a
graphical representation or tab based forms.

The following terminology is used in this article.

• Business Object: Business objects are entities describing the business model and
viewed in the user interface.

• Lightweight Objects: Lightweight objects are a lightweight representation of
business objects displayed in the navigator view or as a result of search queries.
Only lightweight objects are displayed in the navigator pane of the explorer.

• Field: Fields are business object properties displayed in the user interface. Fields
never contains business objects and can have multiple values.

• Relations: Relations are properties containing business objects and displayed as a
hierarchical structure in the navigator view. The objects referenced through
relationships must have a lightweight representation. Relations only contains
business objects and can have multiple values.

2.1 Declarative Model
The user interface structure is defined declaratively. Each property is identified
through its name, has a display name which is often derived from the property name,
the type of the property and if it can be edited or not.

• Business Objects: Business objects are defined as nodes displayed in the
navigator. Nodes in the navigator can be expanded or collapsed. The objects can
also be visualized in the object view and as member of a table view.

• Context Sensitive Menu: if the business object is editable, the menu contains
entries to edit the object, remove it, add a new business object for each of its
relations. The structure is as follow.

• View action is available for all business objects.

• Edit action is available for all business objects which can be edited.

• The view sub-menu provides access to all views defined for the node type. The
default view is automatically selected when the user select a node in the
navigator.

• Remove action is available if the relation to which the object belongs is editable.

• Insert action is available if the relation to which the object belongs is editable.

• Add actions are defined for all editable relations of the node type.

• Custom actions can be defined and are inserted at the end of the pop-up menu.

• Simple Properties: A property is only visible in a table view is it is set to visible.

• Primitive Types: Primitive types are displayed as property values in the object
view and in the table. They are not displayed in the navigator.

4/8 Explorer Framework

• Business Object Types: Business object types are never displayed as nodes in the
navigator. Their properties can be manipulated in the generic dialog of the data
object containing them.

• Indexed Properties: Business object values of a indexed property are only visible
if it the property is set to visible.

• Primitive Types: Primitive types are displayed as properties in the object view.

• Business Object Types: Business object types are displayed as nodes in the
navigator. Nodes in the navigator can be expanded or collapsed. Their properties
can be manipulated in the object view and as member in the table view.
Business objects can added, inserted, and removed from the indexed property.

2.1.1 Context Menu
The context menu provides a set of standard actions. These actions can be enabled or
disabled through configuration.

• Save: The save action saves a data object graph. The action is only possible if the
object is modified.

• Revert: The revert operation reverts the local changes on a data object graph. The
operation is only available if the object is not new. The operation can only be
enabled if the client supports two levels caching.

• Reload: The reload operation reloads the data object graph from the server. The
operation is only available if the object is not new.

2.1.2 Naming Conventions
The declarative model uses naming conventions to access properties. The displayed
beans must fulfill the naming rules.

• Simple Properties are mapped to user interface fields.

• The getter method follows the bean conventions.

• The setter method follows the bean conventions.

• Indexed Properties are mapped to user interface relations. The property name
should be plural.

• Add + singular property name adds a new item at the end of the collection.

• Remove + singular property name removes the given item from the
collection.

• Get + singular property name returns the item with the given index.
• Set + singular property name sets the given item at the given index.
• Get + plural property name returns the collection of all items part of the

relation.

Remove all items is realized using the get all items and remove item methods.

The lines in italics identify methods currently not used in the framework. The bean
methods are called through reflection. The bean programmer is free to add any

Explorer Framework 5/8

business logic inside these methods.

2.1.3 Generic Dialogs
The declarative model is used to generate a generic dialog. The dialog displays all
simple and indexed properties of the data object instance. Their values can be edited.
The generic dialog retrieves declarative information from the user interface factory
owning the declarative type of the edited explorer node. The design assumes that all
explorer node types are handled through the same manager1.

The following mappings are defined.

• Simple Properties: A property is only visible in a table view is it is set to visible.

• Primitive Types: Primitive types are displayed in a text field. Special support is
provided for types such as date, boolean, decimal numbers, and natural
numbers.

• Business Object Types: Business object types are displayed as a special area.
Buttons are provided to edit a value and to delete a value. If no instance exist the
edit will create a new data object. The edit action will display the generic dialog
of the data object type.

• Indexed Properties: Business object values of a indexed property are only visible
if it the property is set to visible.

• Primitive Types: Primitive types are displayed as lists of values. Support is
provided to add, modify and delete a value in the list. Special support is
provided for editing types such as date, boolean, decimal numbers, and natural
numbers2.

• Business Object Types: Business object types are displayed as nodes in the
navigator. They are never displayed in a generic dialog.

2.1.4 Standard Right Views
The declarative model is used to display properties in the right pane. The list of
attributes to be displayed and their order can be configured.

A node type can have right views.

2.1.5 Internationalization
The explorer framework support localization of all texts used in dialogs or views. The
Internationalization concept uses a simple but powerful concept.

● Each text is defined as a static string in a class

● The text translations are stored in a resource bundle following the Java
conventions

● Helpers methods are provided to retrieve a resource bundle and update the
static fields using reflection

1 This assumption is anyway already build in the explorer framework.
2 This feature works only with generics. The generic dialog needs to know which type of objects it

must instantiate.

6/8 Explorer Framework

This approach allows developers to use the refactoring tools provided in modern
integrated development environments.

2.2 Runtime Engine

2.2.1 Data Access Rules
The explorer framework provides a set of powerful yet simple rules how application
data is retrieved and stored.

• The lightweight representation in the navigator is the sole responsibility of the
application developer. The tree can be retrieved from the database, through a
search dialog or any other method.

• The default table view in the right pane uses only properties of the lightweight
business objects. Therefore the navigation through the left pane tree is very
efficient.

• When the user selects a view representation from an explorer pop-up menu, the
explorer framework checks if the business object graph of this node is available. If
not it walks up the lightweight tree until it finds a node being root. The graph of
business object graph under this root is loaded from the underlying layer. During
this process the navigator representation is synchronized with the loaded graph.
Finally the requested view is displayed.

• Business objects are always loaded if necessary before a view, an edit, an insert or
a save operation. A remove operation does not request a load. A load operation is
always performed on a root object.

• Save operations are tricky. The explorer framework must handles the case where
the object to save is a new one and the collection containing it must therefore also
be saved. The above rule guarantees that the owning object is already loaded. The
explorer must walk up the navigator until it reaches a modified object not being
new or the higher object is not persistent. This object is the best solution for the
save operation. Because this behavior is not transparent to the user, the save
operation generates an error message on new objects.

• Explorer nodes containing root business objects have a save function. When
selected the complete graph of business objects is stored in the underlying layer.
The optimistic timestamps are automatically updated to synchronize the client view
with the underlying layer.

Naturally the application user is free to add his own mechanisms such as an explicit or
implicit save action in the view.

2.2.2 UI Node Type
The user interface node type provides semantic actions through the context pop up
menu defined for each node type. Context menus are available on the lightweight tree
representation in the navigator pane.

• When a view must be displayed the explorer checks if the business object is
already available in the application. If not it loads the associated graph of business
objects and connects all the objects with their explorer nodes. The graph is selected

Explorer Framework 7/8

from the first lightweight node being a root.

2.2.3 Lightweight Object Handler
The handler provides services to synchronize lightweight representation with their
business objects. Lightweight representations are often displayed in the navigator pane
of the explorer. The default provided handler has the following assumptions.

• Properties have the same name in the business object and its lightweight
representation.

• Only business objects have lightweight representations.

• A graph of lightweight objects is always complete. No partial graphs of lightweight
objects exist. This assumption is reasonable due to the existence of lightweight
objects.

The handler provides the following services.

• Synchronize a lightweight object with its business object. Each lightweight object
has a reference to its business object. This reference can be null.

• Create the lightweight representation of a business object graph.

Lightweight trees can also be retrieved through the persistence layer if the business
objects are persistent.

3 Architecture
The explorer package provides all mechanisms to map hierarchical data structures to
various graphical representations. Hierarchical data structures are any kind of directed
graph structures. The main goal is that no modification to the underlying model
classes are necessary. So a clean interface between the business model and the
visualization model is realized. Additionally legacy systems can be integrated without
expensive modification activities. Another goal is that the package can be used to
create remote user interfaces using the same remote model stored on a server
application. The communication mechanisms between the framework and the
graphical clients are local method invocation, CORBA or RMI.

• The node class is wrapper class, which models the concept of a node in a
hierarchical structure. The associated object in the model is referenced in the node.
The node contains the name and the associated icon. It implements lazy evaluation
for its children. The children nodes are only instantiated as needed. This
mechanism supports tree of thousands of nodes as long as one node as no more
than about thousand children.

• The node type defines the visible attributes of the underlying node class in the
graphical representation. If an attribute is modifiable is also described. The node
type provides the method used to retrieve the children of the business object and
the method to inquiry the name displayed in the tree. The Java reflection features
are used to provide the meta information.

• Care was taken to allow sophisticated graphical representations. The framework
provides hooks to select the icon associated with a node and its current status.

8/8 Explorer Framework

• Each node type object can define a context menu for all nodes of its type. The
context menu is accessed through the usual mechanism of the platform on which
the application is executed.

• The node type factory provides a factory pattern to create new nodes and their
associated node type for all underlying nodes part of the model. The factory creates
a new node for a given underlying object and creates objects for all its children.

3.1 Context Menus
A context menu selector is configured for each user interface node type.

4 Cookbook
This chapter shows the reader how to create an explorer based interface displaying a
hierarchical data. The major steps are the following.

1. Create a subclass of the explorer.

2. Define all node types with their properties, indexed properties and visible attributes
of the children. If desired a custom icon selector can be registered per node type.

3. For each node type create the view class used to display and modify the attributes
of business objects. The type of the business objects are the ones defined in the
node type.

4. Run the new explorer application.

5. Optionally define additional context sensitive actions in the pop-up menu or global
actions in the menu bar of the explorer. Support classes are provided to simplify
creation of new actions. Standard actions such as new, open, save and save as are
already supported. Only the application specific operations need to be
implemented.

5 History
The actual version of the explorer framework is derived from a prototype developed to
visualize networks of Internet enabled devices. The framework was refined to better
support declarative programming styles and aligned to use the more modern
terminology of the MDA movement.

	1 Introduction
	2 Concepts
	2.1 Declarative Model
	2.1.1 Context Menu
	2.1.2 Naming Conventions
	2.1.3 Generic Dialogs
	2.1.4 Standard Right Views
	2.1.5 Internationalization

	2.2 Runtime Engine
	2.2.1 Data Access Rules
	2.2.2 UI Node Type
	2.2.3 Lightweight Object Handler

	3 Architecture
	3.1 Context Menus

	4 Cookbook
	5 History

