
Data Objects Transactions 1/21

Data Object Transactions
Transaction boundaries and dependencies

Marcel Baumann
Version 0.1.2

Table of Contents
1 Introduction...2
2 Managed Environments...2
3 Application Documentation..3
4 Data Objects..3

4.1 Retrieval...3
4.2 Update..4
4.3 Deletion..5
4.4 Consistency ...5

4.4.1 Lightweight View Consistency..5
4.4.2 Persistence Layer Consistency...6
4.4.3 Database Consistency...6
4.4.4 MDA Approach..6

5 Implementation Considerations...6
5.1 Caches..6
5.2 Client Updates...8
5.3 Server Updates...8
5.4 Queries...9
5.5 Processing Resources...9

6 Architecture...9
6.1 Constraints...9
6.2 Solutions..9

6.2.1 Data Sources..10
6.2.2 Identifier Creation..11

7 Lessons Learned..11
8 Next Steps..12

8.1 Persistence Broker...12
8.2 JDO Standard ..13

9 Bibliography..14
10 Abbreviations..14
11 FAQ...15

11.1 Configuration...15
11.2 Programming...15
11.3 To Do...16

12 Annexes...17
12.1 Weaknesses of OJB...17
12.2 Alternatives to OJB..17
12.3 Cache Implementation...18
12.4 Meeting with Armin Waibel..19

2/21 Data Object Transactions

1 Introduction
The data object framework DOG is used in a mission critical application for contract
management in the insurance branch. The principles of this framework are discussed
in [1].

The development team learned a lot during the migration from CORBA based servers
to J2EE container. The container owns the transactional context and the persistence
layer – based on OJB – must interact with it. During the transition the functionalities
and interfaces to external systems were expanded. These changes induced additional
tuning actions in the application.

The IT team wrote down the lessons learned during the transition to J2EE and the
deployment of the application. The intended audience is architects and developers
well trained in object-orientation and Java technology.

2 Managed Environments
Application servers provide services to handle mundane housekeeping tasks such as
authentication, authorization, persistence, concurrent updates. To fulfill their contract
they request applications to respect a set of behavioral rules.

Object to relational bridges provide services to transparently persist graph of business
objects. Various products are available, for example OJB, hibernate, EJB, etc. They
track new, updated and removed objects and generates the corresponding statements
to synchronize the database. The data object framework build on top of such bridges
to track remote changes performed locally in a client before sending back the updated
graph to the server to store it.

When using an object to relational bridge inside a managed environment care must be
taken that both set of rules do not interfer.

OJB provides configuration hooks to connect to the underlying J2EE container. All
major products are supported. The extension mechanism can be used to add another
product. The team did not encounter major problems deploying OJB in Websphere
and JBoss.

The difficulties were to understand the runtime behavior of the used container and
how to configure it optimally.

The major source code migration problem was to configure the logging system. For
example IBM Websphere is incompatible with the Jakarta common logging API. You
must use log4j or the JDK logging packages. Care should be taken to provide a sound
logging infrastructure to the servers. In particular dynamic change of logging level
without restarting the servers is incredibly useful.

Significant problems happened when deploying the application on the company
internal infrastructure. The transaction, authorization, and deployment components
were still under development. Once these components were stable, the application
behaved as expected1.

1 During this phase two errors were found in the OJB layer. The OJB development team corrected
them in less than ten days. The delay due to the instable infrastructure and associated troubles was at
least two months.

Data Objects Transactions 3/21

3 Application Documentation
A project using the data object graph framework should publish application
information.

• The logical database design should be described as a UML model. Reports from
the MDA model can be generated to provide information about all attributes.
Description of each attribute should be generated as Java comment. This approach
allows developers to access the description with one keystroke in modern IDE.

• The physical database should be described as a ER model. Reports from the MDA
model can be generated to provide information about columns, foreign keys and
reference integrity rules. The indexes are documented.

• The non-functional requirements concerning the persistent objects should be
provided. Trade-offs for critical functions must be documented.

• Physical design decisions should be documented. The rules when indexes are
defined or not are of interest.

• The database should always be accessed through this application. All relevant
pieces of information are available through the application interfaces. The database
itself does not protect against data corruption that could be caused by others
applications.

4 Data Objects

4.1 Retrieval
Graphs of connected data objects are retrieved from the database. Criteria are used to
retrieve the subset of objects the user requests.

Bridges use their own implementation of collections. These classes provide
convenience methods for example to track removal of objects. To avoid subtle
dependencies to brides when transmitted classes over RMI, a deep copy is always
performed on the graphs sent to client applications. A more efficient approach is to
configure the bridge to use standard collections.

The data object graph framework provides deep copy operations and only uses
standard collection classes. If standard collections are used deep copy operations are
no more necessary.

The algorithm has the following steps.

1. Retrieve the original graph from the cache or the database through the services of
the bridges. All objects part of the graph are now in the cache No changes happens
in the transaction context.

2. Creates a deep copy of the original graph. This operation is only necessary if the
collection instances have side effects2.

3. Commit the transaction and returns the graph to the client application.

2 OJB can be configured to use standard collections. In this mode the deep copy is no more needed if
the graph is not modified before transmission to the client. Currently the application is using the
deep copy approach.

4/21 Data Object Transactions

The advantages of this approach are

• The container transaction mechanisms can be used without any modifications.

• No new convenience methods need to be written or maintained. The data object
framework already provides a deep copy function. If the middleware is CORBA
instead of RMI, the deep copy is no more necessary because it is emulated through
the transformation from Java to IDL3.

• No dependencies to the used bridge are propagated to the client over RMI.

• The caching mechanisms of the bridge can be used without any modifications. If
the caching is on a per session basis, no application specific locking mechanisms
are necessary4.

4.2 Update
Graphs of connected data objects are retrieved from the database. A deep copy of the
graph is computed and sent to the client. Criteria are used to retrieve the subset of
objects the user requests. The client modifies the graph of objects and sends it back to
the server. The modified graph contains new objects and modified ones. Objects from
the deep copy were removed.

The data object framework infers the set of modified objects, the set of inserted ones
and the set of deleted ones.

The algorithm used to update the database must consider that the original graph could
be still in the bridge cache and that the bridge is not able to distinguish the cached
objects from the copied ones because they have the same primary keys5.

The algorithm has the following steps.

1. Retrieve the original graph from the cache or the database through the services of
the bridge. All objects part of the graph are now in the cache. The bridge must be
configured so that no read locks are defined on any object of the retrieved graph.
No changes happens in the transaction context.

2. Infers the set of removed objects by computing the difference between the original
and the copied graphs. No changes happens in the transaction context.

3. Clears the objects of the graph form the cache of the bridge6. No objects of the
original graph are anymore in the bridge cache. No changes happens in the
transaction context. The deleted objects collected in the previous steps are still
available7.

4. Register the inserted objects, the modified ones and the deleted ones in the
3 The IDL to Java transformers always use standard collection classes.
4 All caching mechanisms are available. The optimal one is dependent on the application load profile.
5 Here we have a typical impedance mismatch problem. Databases use primary keys to identify rows,

programming languages use handle. Therefore two instances with the same primary keys are two
objects in the context of the programming language but only one in the context of the database or
the persistence layer.

6 This step should always be performed, also in the case when the OJB cache is disabled. Framework
algorithms should never be dependent on application specific configuration of underlying
persistence layers – OJB -.

7 This operation could be superfluous with the future release OJB-1.1. The cache behavior in this
version is enhanced to support complex interactions with J2EE containers.

Data Objects Transactions 5/21

transaction. Changes happens in the transaction context.

5. Flushes the objects in the transaction to create all database related artifacts such as
identifiers and foreign keys. Changes happens in the transaction context.

6. Compute the list of changes to empower the client to synchronize its graphs with
the version stored in the database. No changes happens in the transaction context.

7. Commit the transaction and returns the changes to the client application. The
changes are the newly created identifiers, timestamps for all modified objects and
all application specific attributes updated on server side8.

The advantages of this approach are

• The container transaction mechanisms can be used without any modifications.

• The update mechanisms specific to the bridge can be used without any
modifications.

4.3 Deletion
Graphs of connected objects are deleted from the database. Criteria are used to remove
the subset of objects the user requests.

The remove operation of the bridge are used without any modifications.

The algorithm has the following steps.

1. Delete the graph of objects through the services of the bridge. Changes happens in
the transaction context.

2. Commit the transaction.

The advantages of this approach are

• The container transaction mechanisms can be used without any modifications.

• The removal mechanisms specific to the bridge can be used without any
modifications.

4.4 Consistency

4.4.1 Lightweight View Consistency
Data object graphs can have a lightweight representation. Each time a graph is
updated, its lightweight representation should synchronized. This activity ensures that
the topology and the attributes of the view are the same as of the graph. Two solutions
exists.

• The lightweight object graph is retrieved from the server. The most actual version
is returned.

• A lightweight factory is available to create the lightweight view of a data object
graph. The factory never calls services from the server. Therefore this solution is
always at least as efficient as the first one.

8 In our application company wide identifiers, status changes due to external systems, etc. are handled
in the server.

6/21 Data Object Transactions

The application is responsible to update its lightweight views. The framework does
not provide hooks to perform this task automatically.

4.4.2 Persistence Layer Consistency
The persistence layer provides build-in consistency checks which diminish the risks of
configuration errors. Here some best practices collected over projects.

• The foreign key columns should be declared as anonymous attributes. Anonymous
attributes are not visible in the domain model. This approach is not possible with
OJB due to the restrictions OJB put on the copy operations9.

• The identifier column is visible. The framework uses this field to provide efficient
retrieval and update operations. The identifier column is a numerical value. A
unique index is defined on it.

• All attributes of lightweight objects should be declared read-only.

• All reference code attributes should be declared read-only.

• Declare all indexes in the OJB configuration file.

4.4.3 Database Consistency
Database engines are tuned software and provides powerful tools to insure data
consistency.

• Define a unique index on the technical internal primary key. These indexes should
also be specified in the OJB configuration file. Candidate primary keys should not
be indexed because they were not selected as primary keys.

• Define integrity rules and needed indexes for all foreign keys. These indexes
should also be specified in the OJB configuration file.

• Define integrity rules and needed indexes for all reference codes. Reference codes
are read-only and their indexes never need to be recomputed.

The application currently implements the first and third rules. The second rule is only
partially realized. These rules are always implemented in the database and have no
influence on the functionality or configuration of the server.

4.4.4 MDA Approach
Model driven architecture and code generators codify best practices. They can
guarantee that known consistency rules are always generated. The approach should
follow the guidelines of OMG and support industrial standards such as Diocletian.

5 Implementation Considerations

5.1 Caches
The application framework provides caches to efficiently cache data object graphs.
These caches can be used to provide additional functions on client side.

9 Consult the OJB documentation for a detailed discussion of the restrictions of anonymous primary
or foreign keys.

Data Objects Transactions 7/21

• The server can have a cache to store retrieved persistent objects. The cache
mechanism is implemented in the persistent layer OJB. The cache policy is
configurable through the properties file of OJB10.

• The client has a two level cache.

• The first cache stores the graph retrieved from the server. A cache entry is
generated for each object in the graph having a root capability. A root capability
means that the graph below the node can be retrieved from the server. For
example treaties and programs are roots in the treaty management application.

• The second cache stores the copy of a retrieved graph. Again a cache entry is
generated for each object in the graph having a root capability. This cache
ensures that all views in the client manipulate the same graph instance.

The client caches are used to provide revert functionalities.

• Revert changes: All local changes performed by the user are canceled and the graph
retrieved from the server is displayed again.
The following operations are performed. The roots of the copied graph are cleared
from the second cache. A new copy is created and cached.

• Reload from server: All local changes performed by the user are canceled and a
fresh copy is retrieved from the server. If another user has changed the graph, the
updates are visible.
The following operations are performed. The roots of the copied graph are cleared
from the first and second cache. The graph is retrieved from the server and added
in the first cache. A copy is created and its roots are added to the second cache.

As an option caches can be disabled for special purpose client applications. If all
caches are active the following scenarios can be derived.

• Retrieve a graph of data objects

• The client requests the graph of objects for a root. The type and identity of the
root are specified.

• The framework checks if the root object is in the copied cache.

• If the root is found it is returned else the framework checks if the root object is
in the first level cache.

• If the root is found, a copy is created and added to the second cache. The copied
root is returned. Else the request is delegated to the server through the facade to
the CORBA or J2EE application.

• The request is delegated to the OJB persistence layer. If the object is in the OBJ
cache it is returned else the graph is retrieved from the database, added to the
OJB cache and returned.

• Store a graph of data objects

• The client delegates the request to the server. The updated graph is a parameter
of the call.

10 The cache implementation will be redesigned in OJB-1.1. When upgrading to this new version,
cache policies used in the application should be challenged.

8/21 Data Object Transactions

• The framework computes the set of inserted, modified and deleted objects in the
server. These sets are sent to OJB for the corresponding insert, update and delete
operations. Upon completion the updated attributes values – primary key
identifier, timestamps and server side computed attributes such as company
wide domain object identifiers – are collected and sent back to the client.

• The client side framework updates the graph with the updated attributes. All
roots of the graph are removed from the first cache. A copy of the graph is made
and inserted in the first cache. Now the first cache contains again the graph as
received from the server upon completion of the store. Revert and reload
operations can be executed with the expected results.

5.2 Client Updates
All insertion, edition and validation operations are performed in the client application
without requesting server services. The network latency and bandwidth have no
influence on local operations.

A client commit request sends the complete data object graph to the server. The server
processes the changes and commits them to the database using the object to relational
bridges. Update information are sent back to synchronize the client graph but not the
updated graph itself. The updates are much smaller – only a few attributes for each
modified object - than the graph of objects. This approach is a trade-off between
amount of transmitted data and simplicity of the client side.

5.3 Server Updates
Business logic inserts, modifies or deletes objects on the server. The network latency
and bandwidth have no influence on server side operations.

The business logic is often executed in one transaction context. The above described
algorithms must be designed in a way to allow multiple executions on different or
same graphs in one transaction. You could say that the algorithms must be reentrant in
the context of a transaction.

The above algorithms are reentrant for all reasonable bridge libraries. But they are not
the most per formant ones. The deep copy operations are no necessary if the bridge
component keeps track of the changes in the graphs. Therefore server side retrieval
and store operations without deep copy should be provided if efficiency must be
increased.

Business logic using these server side operations should be implemented by
experienced developers. They must keep track of transaction contexts and transaction
boundaries.

Major gain in performance are achieved using the batch mode feature of JDBC.
Enable batch mode in the connection configuration11.

11 The actual version of the IBM DB2-JDBC driver used in the project as a documented bug in the
batch mode feature. Once an updated version is available the batch mode should be activated for the
application.

Data Objects Transactions 9/21

5.4 Queries
The portability of OJB based applications is greatly enhanced if the OJB query
approach is used. Only this approach is supported in all current or future personalities.
An application using the query classes can move to another personality with minimal
changes.

5.5 Processing Resources
Sophisticated business logic and powerful frameworks have their toll on the
processing resources. Here some rules to limit waste of these resources.

• In the context of a transaction, any object should be retrieved at most once from the
persistence area.

• Reflection is a powerful approach to realize flexible frameworks. These
frameworks should be carefully designed. Never should they request copying of
available data or duplication of information to realize their functions. Each object
creation and later garbage collection has its price.

6 Architecture

6.1 Constraints
The architecture for servers with container managed transactions must fulfill the
following constraints.

• The data object framework should not be modified or have dependencies to
application container services.

• The design should also work for standalone servers.

• Multiple middleware – RMI/J2EE, IIOP/CORBA, JMS – standards are supported.

• Clusters must be supported. The bridge must either support distributed caches or
the cache must be cleared either at the beginning or at the end of each transaction.

As an example the per-broker object cache of OJB has a cache of objects associated
with an instance of a session bean. The container decides when the bean should be
discarded and the cache content cleaned. To insure the objects reflect the data stored
in the database, the cache should be cleared before processing a service request.

The cache provides gains as soon as the work-flow of operations manipulates more
than one time the same objects. In our application this situation arises when the
information must be sent to external systems.

6.2 Solutions
The server architecture is based on service oriented architecture SOA, the locator and
inversion of control patterns. The business object graph framework provides the
following services.

1. Get a graph of objects with a root of a given type. The graph is not managed by the
object relational bridge. Therefore the graph is a deep copy of a managed graph.

2. Store a graph of objects with a root of a given type. The graph to store is not

10/21 Data Object Transactions

managed by the object relational bridge.

3. Delete a graph of object with a root of a given type. The graph is not managed by
the object relational bridge.

4. Get a graph of object with a root of a given type. The graph content is managed by
the object relational bridge.

5. Store a graph of object with a root of a given type. The graph to store is managed
by the object relational bridge. Therefore the store function is implicit and does not
require any code.

6. Delete a graph of object with a root of a given phenotype graph to delete is
managed by the object relational bridge. Therefore the delete function is implicit
and does not require any code.

7. Search functions should be implemented as a bridge managed query.

Currently the application implements searches in SQL at JDBC level. This approach
was chosen for two years to insure portability of complex queries to environments no
using OJB. SQL queries are used to realize the following functions.

• Search treaties, programs and businesses fulfilling a set of criteria

• Generate natural catastrophe online reports. The relevant scenarios fulfill a set of
criteria

OQL queries are used for all other inquiries. All OQL queries are trivial and the only
search criterion is the identifier of the desired object.

6.2.1 Data Sources
The server application has multiple data sources connecting to various physical and
logical databases. The major part of interactions with the data sources are handled
through the object to relational bridge library. A small set of operations are coded as
JDBC statements. Special rules must be respected so that these statements do not infer
with the bridge.

• A first approach is not to code any SQL statement against a JDBC statement.
Always use the services of the bridge to implement application specific statements.

• The data source describing the database access should support either nested
transaction or two phases commit XA protocol. Multiple connections can only be
used in the same transaction if XA is enabled.

Two phases commit is only necessary due to operational constraints of the
environment where the application is deployed. The only requirement we have is
nested transactions. The reason is the following one. Certain business functions
requires first to perform some modifications, commit them to the database, and when
execute the next work unit. J2EE containers manage the transactional context
therefore the only clean approach to implement the above business functions is to use
nested transactions.

Two phases commit will be a welcome improvement in our application for the
following work-flow. First we commit updates to the database, when we send the
changes to an external system using JMS or a stagging table in another database, for

Data Objects Transactions 11/21

example accounting or central auditing. If the operation is not successful we must
rollback the whole work-flow. Only XA approach enables an application to
implement this function12.

6.2.2 Identifier Creation
The store algorithm enables us to create efficiently in one pass all application specific
identifiers for newly created business objects. Once the objects were flushed to the
database any kind of identifiers can be generated and set in the associated objects.
When the changes are committed to the database, the creation and the new identifiers
are written to the persistent store in the same transaction.

The data object graph provides mechanisms to propagate the changes to the client and
update its local copy of the data object graph without transmitted the objects over the
wire.

The identifier generators are application specific. The algorithms can be tailored to
fulfill all application specific requirements. Two strategies are quite efficient. The first
one uses the persistent identity manager provided with OJB. The second uses
sequences in the database to create identifiers. Some database provides identifier
columns which generate on the fly unique values. This mechanism is not portable and
does not always scales up13.

7 Lessons Learned
The lessons learned were collected during mission critical application development
during 2002, 2003 and 2004.

The open source community is slowly migrated to managed environments and J2EE
containers. The tools are still under heavy development and not always ready for
mission critical applications. But similar statements can be made for commercial
grade products.

A pragmatic approach for OJB and the ODMG personality is the following one.

• Use optimistic locking to detect concurrent changes14. Pessimistic locking with
multiple remote clients is not efficient and prohibits the use of stateless sessions.

• Avoid using removal aware collection. The data object graph framework handles
which objects should be removed or not. OJB removal rules are rather a pain than a
help when implementing the data object graph framework. OJB can be configured
to use standard collection classes.

• Use no caching or enable it only at broker level. We suggest to use the broker level
caching. The cost is similar and gains are huge as soon as work-flow processes
accesses multiple times the same objects in a transaction.

12 The application does not implement XA for such cases because the external systems currently do
not support it. But it should be stated that the actual solution allow system wide inconsistencies.

13 For example the configuration for such fields in clustered DB2 requires some expertise.
Additionally before and after copying rows in the database during migration or restore operations
requires tweaking of these columns.

14 The application has long lived transactions. Therefore pessimistic locking should be avoided. Please
consult database literature for a detailed discussion of optimistic versus pessimistic locking
approaches.

12/21 Data Object Transactions

• Set lock association to read instead of write. This option enables OJB to create
locks using a lazy approach. The performance gain is measurable.

• Use shareable data sources. Do not use user name or password. Otherwise
containers such as Websphere will not share the data source as documented in an
obscure IBM technical note.

• Currently the implicit locking is set to true. The exact reason why the over mode
does not work is not inferred15.

• Each time the application requests an explicit connection from a data source, it
must close it to return it to the pool.

Use the OJB extension to the ODMG specification to register modified objects in a
transaction.

((TransactionExt) tx).markDirty(dataObject);

First have a running system, second tune the system. Measure your system, analyze
the results, decide how to improve it. Start again the loop.

Tuning a mission critical system requires access to professional performance
measurement tools for the database, the application server, network traffic and end to
end functions. Without such tools performance tuning is just guessing and has nothing
to do with professional engineer practices.

Be aware of locking propagation in the database when performing operations
associated with reference integrity rules. Such rules force the database to lock other
records to insure that the rules are respected.

8 Next Steps

8.1 Persistence Broker
The actual version of the persistence broker API has powerful features. When the
auto-retrieve, auto-update and auto-delete features are used it has almost the
expressiveness of full grown object/relational standards. The only feature not provided
is object locking instead of database locking. Analysis of the requirements of
applications shows

• The locking is only relevant for applications where users often concurrently modify
graph of data objects.

• Object locking can be replaced with a per broker cache and optimistic locking. It
insures that no concurrent modifications on objects are possible and always detect
concurrent modifications. The cache must be cleared at the end of the transaction
or the objects fetched from the database in the next transaction to insure that
objects always contain the latest values.

• The persistence broker is compatible with managed environment. It is the low level
layer of OJB and therefore extensively tested.

• The persistence broker should be a factor two more efficient then high level

15 The restriction could be related to the ODMG personality.

Data Objects Transactions 13/21

standards such as ODMG or JDO.

8.2 JDO Standard
The JDO standard is the official successor of ODMG. Major players push this
standard for POJO persistence.

The current JDO implementation in OJB is not production ready. Therefore the JDO
approach is not a viable one with the current version.

14/21 Data Object Transactions

9 Bibliography
[1] Data Object Graphs

A pragmatic Approach to MDA generated DTO graphs
Marcel Baumann, 2003

[2] OJB Documentation
Apache Foundation
http://db.apache.org/ojb

[3] MDA Documentation
OMG
http://www.omg.org

10 Abbreviations
API Application Programming Interface

CORBA Common Object Request Broker Architecture

DOG Data Object Graph

DTO Data Transfer Object – the older terminology for this
pattern was value object – The pattern is sometimes
called Transfer Object EJB Enterprise Java Beans

IDE Integrated Development Environment

J2EE Java 2 Enterprise Edition

J2SE Java 2 Standard Edition

JDO Java Data Object

MDA Model Driven Architecture

OJB Object Java Bridge

ODMG Object Data Management Group

OMG Object Management Group

O/R Object / Relational

POJO Plain Old Java Object

UML Unified Modeling Language

USDP Unified Software Development Process

XP Extreme Programming

http://db.apache.org/ojb
http://www.omg.org/

Data Objects Transactions 15/21

11 FAQ

11.1 Configuration
1. Which is the best approach to create OJB configuration files?

Use a MDA approach. Model your application with UML and use generators to
create the database schema and the OJB mapping file. The web site of OJB lists a
set of design tools.
The authors recommend such an approaches. Organizations – OMG – and
universities are publishing more and more about MDA. The first experiences show
a gain of productivity especially for iterative development cycles and to maintain
the applications. Being a mainstream technology well-trained engineers can be
found on the market.

2. How should the data source be configured with OJB?
Use the standard configuration. The data source is sharable, read committed, no
two phases commit. Only if you really need two phases commit you should use it.

3. How does OJB uses the indexes declaration?
We do not know. At least their definition does not seem to disturb OJB.

11.2 Programming
1. Which approach should we use to write complex queries?

Use the query by criteria interfaces. This advice should only be follow if you do not
plan to use other O/R tools. Otherwise stick to JDBC SQL code, which is portable
but less legible and maintainable.

PersistenceBroker broker = ((HasBroker)tx).getBroker();
QueryByCriteria query = ...
Collection objects = broker.getCollectionByQuery(query);

2. How should reference codes be stored in the database?
Two approaches exists. First you can define a table for each reference code type.
This approach is simple but the number of tables grows linearly with the number of
types. For complex applications deployed in various environments the burden for
the database administrator can become painful. Second you can define a unique
table for all reference code types. OJB provides mechanisms to store instances of
different classes in the same table. The management of the codes is a lot simpler.
Views can be provided to help report writers working at the database level. The
drawback is that the implementation of reference integrity rules is more complex
and slightly slower. In any case the reference codes should be set to read-only.

3. What is the pseudo-code for the store operation of a data object graph?
For the complete source code please consult the CVS repository.
 NarrowTransaction narrowTx = (NarrowTransaction)getCurrentTransaction();

// call DOG to update the inserted, modified and deleted objects
// the flush operation writes to the database. All database generated fields are
// available
narrowTx.flush();
// updates application specific identifiers and fields

16/21 Data Object Transactions

updateReferences();
// collect the updates and returs them
return storeVisitor.getUpdateInfos();

11.3 To Do
• Find out the difference between using mark dirty and acquire write lock to persist a

modified data object.

• The DOG framework has complete knowledge which objects have been inserted,
modified or deleted. Therefore the implicit locking could be disabled to speed up
the performance of OJB. When retrieving graphs the implicit locking should be
active to automatically retrieve all layers of the graph.

• Test if the retrieval of a set of objects is one select or 1 + n select where the first
one retrieves the set and one select on the identifier is performed to find out if the
object exists.

• Test if spurious select statements to verify that an already read object still exist in
the database are generated.

• Evaluate if refactoring the facades in the DOG framework is worth the costs. In
other words do we have ROI arguments.

Data Objects Transactions 17/21

12 Annexes

12.1 Weaknesses of OJB
The apache open source project OJB has strengths in its design and the variety of
databases and environments it supports. The project has also weaknesses which
should be documented to avoid disappointments.

• Releases are slow to be published. Open source projects have seldom a predictable
release stream with deadlines.

• Commercial support is currently not available as maintenance contracts. It is
possible to contract some developers of OJB but no offering from a company
exists.

• Experience shows that each time a new version is released, the projects we are
working on experience one to three errors16. Once these errors are isolated the
response time to correct them is quite good – between a few days up to two weeks
-.

• Testimonials show that complex applications were developed and deployed with
success – see http://db.apache.org/ojb/references.html -. But none of the reports
describe the configuration we are using in some of our projects.

12.2 Alternatives to OJB
Various object relational mapping tools and persistence layers are available on the
market. Here some information about alternative products. The classification defines a
set of standard approaches – J2EE EJB, JDO, ODMG – and non standardized
approaches. The products for each approach is either commercial or open-source.

• J2EE EJB: The enterprise Java beans are the official persistence mechanism for
J2EE applications.

• EJB 1.x: The standard is obsolete and replaced with the newer and more
powerful version 2. All references insist that new projects uses the newer
standard. The older one should only be considered for legacy purposes.

• EJB 2.x: This standard defines the official persistence mechanism for J2EE
based application. Work is currently under way to defined the revision 3. This
revision will integrate the plain old Java object POJO approach.

• JDO

• KODO – commercial offering -

• Open source JDO implementations are slowly available. But reports describing
their use in mission critical applications are not available.

• ODMG

16 In one iteration the sequence generator for DB/2 database was erroneous for the version we were
using. In the next iteration the object in the envelope of a transaction was not replaced with a newer
one – with the same identifier – in a container manager persistence configuration. In the same
iteration we found out that calling mark dirty instead of lock for write improved the performance by
a huge factor.

http://db.apache.org/ojb/references.html

18/21 Data Object Transactions

• POET – commercial offering -

• Non standard solutions

• TOPLINK – commercial offering – The company who developed the product
was bought by Oracle.

• Hibernate – open source – is a well-known persistence layer. It is the preferred
library for the J2EE JBoss product. The API is custom. A partial support of
ODMG is provided. Future development is heading to EJB3 to support this
standard in JBoss.

An entry point for extensive information about mapping products can be found under -
http://c2.com/cgi-bin/wiki?ObjectRelationalToolComaprison -.

12.3 Cache Implementation
Readers requested a description of the cache implementation in the initial version of
the DOG framework.

• Facade Manager is responsible to manage all facade instances. The manager
provides the facade responsible for a specific data object type.

• Facade The facade interface defines an abstraction to access data objects of a
specific type and to describes the type. The type information is used to access all
roots of a data object graph. The services of the class can be grouped in three sets.

• Services to describe the capabilities of the root data object type managed
through the facade instance – data object class, lightweight class, etc. -.

• Services to read, update and remove a graph of data object. The root of the
graph must be of the type managed in the facade instance.

• Services to manage the caches defined in the facade instance.

• Facade Implementation provides a default implementation of set of the methods of
the facade interface. The class is abstract.

• Facade without cache provides a default implementation of a facade without cache.
The class was deleted in a next version of the framework. The visitor pattern is
used instead.

• Facade with cache provides a default implementation of a facade with a cache. The
class is abstract.

• Client facade implementation provides an implementation of facade with cache for
the client. The class inherits from facade with cache and implements the abstract
methods retrieving the children of data object instance. Children are only returned
if they are root objects – only treaty and period have children -.
The retrieve methods are hard coded and do not use model information to retrieve
the root children of a data object instance.

The above classes are used for two years in the application without any troubles. If a
refactoring is once performed, the classes could be replaced with a global cache for
the client. The graphs could be traversed using iterators. The type information is still
needed to decide if a data object type is a root or not.

http://c2.com/cgi-bin/wiki?ObjectRelationalToolComaprison

Data Objects Transactions 19/21

12.4 Meeting with Armin Waibel
A telephone conference was hold Tuesday, 07 September 2004.

• How should we handle J2EE container initiated rollback?

• Set rollback only on container does not throw a container object. The
session bean should throw an exception – for example remote exception –
to inform the client application. The internal data structures should be
cleaned if a rollback is executed.

• Avoid batch mode in the JDBC driver. Possible errors are still in the actual
release of OJB-1.0. Our application do not use batch mode because we
must use an IBM JDBC type 2 for DB2. This driver version has bugs in the
handling of the batch mode.

• Sequence manager for native identity had an error in situation where multiple
session beans because each broker has a separate instance of the sequence manager.

• Mister Armin Waibel will release a patch in CVS.

• Should we close the connection when requesting it explicitly from the data source?

• Yes. Data sources in managed environments does have the problem that no
commit can be programmed. OJB has a wrapper to block all prohibited
operations. But sometimes OJB cannot close the connection because it is
not informed from the container about completion – for example with JBoss
-. Similar symptoms are possible in other containers.

• Our application has trouble reading a tree of data objects, extracting some data,
throwing them away, and writing a clone of the same tree.

• The problem is currently unknown. Armin will try to reproduce it.

• Queries always generate an order by on the primary key if no order clause was
defined. These operations are expensive in DB2.

• This situation is probably an error in the query management in OJB. Mister
Armin Waibel will look at it with the responsible developer. The sort is
probably defined to support paging and limitation of results when executing
a query.

• Cache management definition for managed environments.

• Cache per broker or empty cache should be used currently. Shared caches
must be distributed but still allow dirty reads.

• Auto-retrieve, auto-update and auto-delete

• The flags should be set to true, false, and false. The flags must be set
manually in the repository file.

• ODMG and persistence broker performs a propagation of inserts if a new
tree is added to the database.

• ODMG versus persistence broker API

• The application could be run using the broker API. The performance
increase is about 50 %. The auto flags – retrieve, update, delete - are

20/21 Data Object Transactions

available to emulate a behavior very similar to the one of the ODMG API.

• The persistence broker also support insert, delete and update propagation
through a tree of data objects.

• Are new releases planned in the future?

• The minor release 1.0.1 was released the 8th September 2004. The minor
release 1.0.1 should be released end October 2004.

• The release 1.1 is the next major release. The release date should be end of
2004.

• ODMG interface is less used and will be replaced in the future with JDO.

We would like to thank Armin for the information and the support.

12.5 Technical University Discussions
The meeting was held Wednesday 2nd February 2005 in Zug.

• Why optimistic locking is used for detecting concurrent changes in DOG?

• The design assumes that clients perform complex activities. To avoid long
living transactions the optimistic locking approach is used. If your
application requests over approaches you must modify the templates.

• How are transactional contexts managed in DOG?

• The transactional context is managed through the framework and pluggable
transaction managers. Once version used for CORBA server manages the
transactional context for each CRUD operation performed on a data object
graph. A second version used for J2EE server delegates transaction
management to the J2EE container.

• What is the purpose of the lock manager?

• The lock manager is an application level object lock manager
implementation. The algorithm knows how to retrieve all root nodes of a
graph. The lock manager is optional and should only be used when
performance is too low in a distributed J2EE environment.

• Are shallow objects supported in the actual version of DOG?

• Yes, but the developer must program the details. See the DOG design
document for a discussion which operations are legal on shallow objects.

• Which are the work package to support .NET?

• Adapt the Velocity templates to support .NET business object written in C#.

• Write the equivalent of the DOG framework on the server side.

• Plug the DOG framework to OJB.NET.

• Write the equivalent of the DOG framework on the client side. The client
will talk with server using .NET remoting features.

• Integrity rules templates should be corrected to generate usable code. The corrected
templates should be delivered.

Data Objects Transactions 21/21

• Trunk 0.3.x contains integrity rules template working with MySQL – CVS
check-in 10th February 2005 -.

• N to M relations are not working correctly.

• Import declarations for indexed properties are not generated in certain situations.

• Could not be reproduced with the actual test cases. We are looking to define
new ones to identify the problems.

• Constructors with parameters are not correctly generated.

• Due to the limitation of this option allowing only the definition of one
additional constructor the associated tagged value was removed. Work is under
progress to define a more general solution.

• Generation of changeable and vetoable events do not follow the constraints of the
associated tagged values.

• Trunk 0.3.x contains updated template code. Refactoring of tagged value
names was not applied to some templates therefore regression problems
occurred.

• The accept method should call the accept method of simple properties having a
business object as type.

• Trunk 0.3.x contains updated template code – CVS check-in 10th February
2005 -.

• The abstract visitor functor has an erased type for the functor instance. Is it really
necessary?

• Could the different frameworks – MDA generator, explorer framework, data object
graph framework – stored in different directories?

• The MDA generator already has a seperate source directory. The DOG and
explorer frameworks are stored in the same source directory but are
distinguished through their package names. The application framework is
ch.bbv.application.*, the DOG framework is ch.bbv.dog.*, the explorer
framework is ch.bbv.explorer.*. Currently no plan exist to further seperate
the frameworks.

• Could more complete UML diagrams be provided as overviews?

• Yes, an updated model with more class diagrams and information will be
provided.

	1 Introduction
	2 Managed Environments
	3 Application Documentation
	4 Data Objects
	4.1 Retrieval
	4.2 Update
	4.3 Deletion
	4.4 Consistency
	4.4.1 Lightweight View Consistency
	4.4.2 Persistence Layer Consistency
	4.4.3 Database Consistency
	4.4.4 MDA Approach

	5 Implementation Considerations
	5.1 Caches
	5.2 Client Updates
	5.3 Server Updates
	5.4 Queries
	5.5 Processing Resources

	6 Architecture
	6.1 Constraints
	6.2 Solutions
	6.2.1 Data Sources
	6.2.2 Identifier Creation

	7 Lessons Learned
	8 Next Steps
	8.1 Persistence Broker
	8.2 JDO Standard

	9 Bibliography
	10 Abbreviations
	11 FAQ
	11.1 Configuration
	11.2 Programming
	11.3 To Do

	12 Annexes
	12.1 Weaknesses of OJB
	12.2 Alternatives to OJB
	12.3 Cache Implementation
	12.4 Meeting with Armin Waibel
	12.5 Technical University Discussions

