
Data Object Graphs 1/32

Data Object Graphs
A Pragmatic Approach to MDA Generated DTO Graphs

Marcel Baumann
Version 1.0.10

Table of Contents
1 Introduction...3
2 J2EE Blueprints...5
3 MDA Generation...7

3.1 Features..7
3.2 MDA Model..8
3.3 Semantics...8

4 Update Mechanisms..10
4.1 Assumptions..10
4.2 Retrieve Objects..12
4.3 Insert Objects...12
4.4 Modify Objects..12
4.5 Delete Objects..12
4.6 Store Objects..13
4.7 Transactional Context..13
4.8 Server Cache..14
4.9 Client Cache..15
4.10 OJB Dependencies...15

5 Extensions...16
5.1 Lightweight Types...16
5.2 Shallow Objects...16
5.3 Queries...17
5.4 Derived Attributes...18
5.5 Reference Codes..18

6 Architecture...19
6.1 Data Object Identifier ...19
6.2 Data Object Type ..20
6.3 Data Object Interface ..20
6.4 Lightweight Data Object Interface ..20
6.5 Reference Code Interface ..20
6.6 Data Object Handler Interface...21
6.7 Persistence Manager ...22
6.8 Reference Code Manager Interface...22
6.9 Caches..23
6.10 Detailed Design...23

7 Best Practices..24
7.1 Models...24
7.2 Coding Conventions..24
7.3 Queries...24

2/32 Data Object Graphs

7.4 Framework Manipulations...25
7.5 Database...25

8 Future Directions..26
8.1 Introduction..26
8.2 Improvements..26
8.3 Additional Mechanisms...26

9 Implementation..28
9.1 OJB Support..28
9.2 Hibernate Support..28
9.3 C++ Support..28

10 Glossary...30
11 References...31

Data Object Graphs 3/32

1 Introduction
Modern client-server applications manipulate complex graphs of data objects. For
example a contract with its positions and optional amendments is represented as a
hierarchy of data information. These graphs are transferred from and to the client
application. The user views data, edits it and commits the changes to the database
through server functions. The patterns commonly found in the literature describe
thoroughly how to implement simple data transfer objects DTO but ignore the
complexity how graphs of objects should efficiently be transmitted between server
and client components. The intended audience is software developers interested in
using DOG or implementing their own variant.

The framework described here provides pragmatic solutions to this common problem.
This “state of the industry” approach efficiently transfers trees and graphs of value
objects between client and server. Modern code generation technologies, based on the
model driven architecture MDA approach are used to generate needed code artifacts.
To streamline the integration of the framework into enterprise infrastructure, care was
taken to provide a bridge to the enterprise blueprints described in the J2EE guidelines.
The application architect can fully concentrate on the business analysis and avoid
loosing time to solve infrastructure problems.

The document explains the various mechanisms implemented in the provided
solution. The information reflects the status of the latest release. Intended audience is
software developers who want to use the framework or extend it further. The chapter
“Introduction“ describes the code generation framework used to create the data
objects, the chapter “Update Mechanisms” explains the provided update mechanisms.
The next section “Extensions” documents support for framework extensions such as
lightweight types. A separate chapter “” introduces the validation framework used to
verify the correctness of the graph. The last chapter “Future Directions” describes
future directions of the framework.

The diagram below shows the various component of the persistence framework.
Green components are components external to the framework. Care was taken that a
complete set of open source components exist to create a running system. Naturally
commercial products are also available. The open source community statement
remains.

“You pay more, you get less.”

The light gray components are the specific ones to the framework. They are
responsible to manipulate data object graphs on client and on server side. When
graphs are updated the components synchronize the caches. The dark gray
components implements the communication between the client and server persistence
framework. Often it is necessary to slightly adapt them to the application being
developed. If the communication medium is CORBA 2.3 or higher, or a J2EE
container is used, the implementation can be used as provided.

The source code of the data object graph manipulation framework provides detailed
documentation of the classes and methods. The Doc-Check from Sun was used to
verify the completeness of the documentation.

4/32 Data Object Graphs

A major goal when developing the framework is to follow existing or emerging
standards such as “Service Data Object JSR235”.

Illustration 1 Client /Server Business Object Graphs

Data Object Graphs 5/32

2 J2EE Blueprints
The data object graph framework is an extreme variant of the “Composite Entity”
blueprint defined J2EE patterns. The strategies to send efficiently objects over the
wire and to retrieve graphs from the database are similar to the suggestions found in
the blueprint and realizes the “Transfer Object” pattern. The main extension is that
our framework does not need at all entity beans. They can be used but are not
required. Below we show the advantages of this pattern as described in the guidelines
of the J2EE platform.

All advantages described in the pattern are achieved. To harmonize the terminology,
the reader should know that transfer object, dependent object and composite object
described in the below text is coalesced to the term data object in this document.

• Eliminates Inter-Entity Relationships: Using the composite object pattern, the
dependent objects are composed in a graph, eliminating all inter-entity-bean
relationships. This pattern provides a central place to manage both relationships
and object hierarchy.

• Improves Manageability by Reducing Number of Entity Beans: Using composite
objects reduces the number of entity bean classes and code, and makes
maintenance easier. It improves the manageability of the application by having
fewer coarse-grained components.

• Improve Network Performance: Aggregation of the dependent objects improves
overall performance. Aggregation eliminates all fine-grained communications
between dependent objects across the network. If each dependent object were
designed as a fine-grained entity bean, a huge network overhead would result due
to inter-entity bean communications. Avoid network traffic because everything else
is faster.

• Reduces Database Schema Dependency: The database schema is hidden from the
clients, since the mapping of the entity bean to the schema is internal to the coarse
grained composite object. Changes to the database schema may require changes to
the composite entity beans. However, the clients are not affected since the
composite entity beans do not expose th schema to the external world.

• Increases Object Granularity: With a composite entity, the client typically looks
up a single entity bean instead of a large number of fine-grained entity beans. The
client requests the composite entity for data. All objects are transferred to the client
in a single remote method call. This reduces the chattiness between the client and
the business tier.

• Facilitates Composite Transfer Object Creation: Although a transfer object returns
all data in one remote call, the amount of data returned with this one call is much
larger than the amount of data returned by separate remote calls to obtain
individual entity bean properties. This trade-off works well when the goal is to
avoid repeated remote calls and multiple lookups.

• Overhead of Multi-level Dependent Object Graphs: If the dependent objects graph
managed by the composite entity has many levels, then the overhead of loading and
storing the dependent objects increases. This can be reduced by using the
optimization strategies for load and store, but then there may be an overhead

6/32 Data Object Graphs

associated with checking the dirty objects to store and loading the required objects.

The persistence mechanism is an implementation of the “Data Access Object”
pattern. The implementation is orthogonal to the composite entity pattern and does not
request any modifications of the data object source code. Therefore the business logic
is independent from the data access logic. Data access functions specific to the data
object graph framework are implemented in separate classes not part of the business
model.

Data Object Graphs 7/32

3 MDA Generation
The model driven architecture – MDA- approach helps architects to concentrate on the
domain modeled as platform independent model – PIM -. The transformation of this
model into the platform specific model - PSM - is an automatic process done with
MDA code generators tailored to the target platform.

This approach frees the developer from writing tedious source code for a set of data
object types defining a domain model. These data objects often follow the Java bean
conventions. For each property a setter, a getter, an optional change event and a
vetoable event must be implemented. Support classes are written to provide standard
patterns as the visitor, or the abstract factory. Additional mechanisms are often
provided to manipulate reference codes or to connect validation rules on the data
instances.

The PIM model describes features of the domain entities. Code generators are used to
create source code artifacts used in the PSM model.

3.1 Features
The provided code generator uses the concept defined in MDA and provides the
following features.

• Accessors for simple or indexed properties. The visibility of the methods can be
configured. The field is always private1.

• Constructor initializing all collection fields. It is possible to define a collection
interface for the visible part of an indexed property and a different implementation
class to realize the container.

• Change and vetoable events if the property requests it. The implementation is fully
compatible with the Java bean conventions.

• Handling of the modified flag when properties of a bean instance are updated.

• Generation of the OJB configuration file to support the persistence of the objects.
The current persistence framework OJB supports ODMG 3.0 and JDO2 standards.

• Generation of the value data object transformer to convert the data objects to a
form, which can be transmitted over the communication protocol. Idiosyncrasies of
older communication protocols, such as null value support in CORBA 2.1 are
solved in the code generator [Brose2001].

The code generator belongs to the family of active tools. Modifications of the domain
models are always performed in the MDA representation. The source code is
generated each time the model is changed. Mechanisms are provided to preserve
customer extensions of methods in the generated classes.

The persistence framework directly manipulates the generated data objects. The
diagram below shows the overall flow of transformation from the descriptive model to
the final applications. The separation of concerns between the server and client is
shown too.

1 This convention follows best practices of object-oriented development.
2 The current implementation is based on the reference implementation of Sun and should not be used

in productive environments.

8/32 Data Object Graphs

3.2 MDA Model
The business domain is described in a XML file. The initial version uses a modified
Torque based XML data definition type. The new version is XMI compliant and stores
the framework specific attributes as stereotypes and tagged values. Therefore this file
can be viewed and edited with any UML compliant modeling tool. This approach
provides compatibility with commercial and open source tools.

The drawback of this approach is the fact that editing tagged values is a cumbersome
activity in actual UML tools. The concept of profiles exists in UML but it only
simplifies the definition of the meta-model, not its manipulation.

The code generator instructions are defined as Velocity templates. Using MDA
terminology these templates are the cartridges of our source code generation
framework.

3.3 Semantics
The model describes the semantic of different aspects of a complex application.

• Persistence mapping between business layer and relational database. The attributes
are mainly information for the database mapping. The information is used to create
the mapping files and the definition file for the database.

• Transformer mapping describing which attributes are sent over the wire and if null
values should be supported. This information is almost derived from the
persistence mapping.

In the future the model will describe the view model and mapping information
between the view model and the user interface.

This mapping attributes are defined as tagged values. Each tag has an implicit type, a
set of legal values and often a default value. The set of all tags defines a domain
specific meta model in the MOF terminology. Therefore all tags are formally

Illustration 2 Transformation Process

Data Object Graphs 9/32

documented in a reference document.

10/32 Data Object Graphs

4 Update Mechanisms
The framework provides mechanisms to retrieve, update, insert and delete individual
objects or whole subgraphs. Two groups of functions are provided. The first group of
methods manipulates a shallow object copy without any children. These methods are
useful to change simple properties in one object. The second set of procedures
manipulates graphs of objects.

Newly inserted objects are automatically detected in the framework because their
identifier is null. Deleted objects are inferred from the difference between the copied
graph and the original one stored in the cache. Updated objects are discovered because
their flag “modified” is set to true. Objects are updated either because a property value
was changed or a child was added or removed3.

The two diagrams below show left the original graph and right the updated one. The
node labeled with “C” are clean ones, with “M” are modified ones, with “I” are
inserted ones, and with “D” are deleted nodes. The algorithm traverse both graph and
collects the nodes to identify the deleted ones. After the traversal we simply check if
an original node is in the collection of the nodes in the modified graph. Updated and
inserted nodes can directly be identified in the modified graph.

The routine completes its work in O(3 n)
where n is the number of nodes in the graph4. Both graphs are first traversed to infer
differences. The last traversal commits the changes in a transactional context.

3 In Java object-oriented terminology children are indexed properties. Therefore inserting or
removing a child modifies the indexed property of the father.

4 This algorithm is fast on standard personal computer with graphs containing up to twenty thousand
nodes.

Illustration 3 Original Object Graph Illustration 4 Modified Object Graph

Data Object Graphs 11/32

4.1 Assumptions
The framework architecture is optimal if the following assumptions are true for your
application.

• Identity: An object is identified with the information pair (qualified class name,
identifier). Newly created objects can only be identified after they are stored in the
database. The identifier is created through services of OJB. Best practice is to use
the auto increment feature of the underlying database5.
Using database terminology the identifier is a technical primary key composed of a
unique numeric column in the table containing the instance.

• Functions: The data object classes must implement the visitor pattern. This pattern
is used to traverse graphs of data objects.

• Optimistic Locking: Client applications seldom modify the same data objects
concurrently. The framework uses optimistic locking to detect conflicts6. The
framework implementation is optimized for load patterns where services seldom
modifies the same objects concurrently.

• Completeness: A graph of data objects is transmitted completely. The application
can decide the level of the root but all children are sent. Therefore the size of the
graph should not exceed the transmission capacities available between the client
and the server.

• Network Latency: The framework assumes that the cost transmitting data between
the client and the server is not negligible. Or more precisely, the latency is non-
zero, the bandwidth is finite and the network is not always reliable.

• Service Oriented Architecture: Complex business logic is not part of the data
objects. These functions should be realized in specialized services. This approach
is called service oriented architecture. For example you model sales contracts, the
functions computing your margin or customer discounts should be realized as
services. Often these services have to be changed to reflect new company rules.

• Modified Flag: The generated data objects internally set the flag “modified” each
time a property value has changed.

The framework is easier to use if the developers follow build-in axioms how functions
should be accessed or programmed.

• The application developer never set the identifier of a data object. The handling of
identifiers is performed inside the framework.

• The application developer always accesses reference code properties through the
associated code type. The identifier of the code is never used to directly modified
such a property.

• Local business logic can be implemented in the data object class as application
extensions. Such extensions are preserved when the classes are generated.

5 Application identities, visible to the users should be created through a business service. The
framework has no knowledge about these identities and handles them as normal properties.

6 Pessimistic locking is seldom in distributed applications. To implement it the server must keep the
context of the client call until it commit or rollback its transaction. Transactional contexts open for a
long time is quite expensive and should be avoided.

12/32 Data Object Graphs

Complex business rules should always be implemented in an orthogonal structure.
This approach is the one promoted in the service oriented architecture approach.

4.2 Retrieve Objects
The OJB framework retrieves graph of connected objects in one single request. The
framework does not need to write additional code for this operation. The retrieve
criteria is the identifier of the root object. The server side programmers can define
additional queries to load specific object graphs. The full power of the OQL language
is available to them.

Retrieval operations are provided for each data object type being a root. When a root
is retrieved, the transitive closure of the graph is retrieved.

The transformers translate the graph to the transmission format. This new object is
sent to the client where the same transformer classes perform the reverse operation.
Now the client has a copy of the data object graph read from the database.

4.3 Insert Objects
Business objects can be created and inserted in the graph using the setter methods of
properties. Complex domain models often provide a factory to create and initialize
objects. The framework is not involved in the creation of objects. It will take care of
the new objects during the store phase. All newly created objects, and only such
objects, have a null identifier. The framework uses this assumption to identify new
object.

The initialization of a new data object is not handled in the persistence framework.
The application should provide a factory responsible for the creation and initialization
of new data objects. The factory can apply default values and user preferences on the
newly created objects. It can also define complex graph creation services.

4.4 Modify Objects
The client can manipulate the received copy of the data object graph. Changing a
simple property modifies the object owning it. The generated code detects the
modification and set the boolean flag “modified” to true. The flag is set each time any
property of the object is modified. Parent and children nodes are not modified through
such operations.

Changing an indexed property modifies the object owning it. A change is either
adding new objects or removing existing ones from the list containing all values of the
indexed property. Just updating an attribute of an object part of the indexed property
does not change the owner of the property.

The persistence framework handles all modifications, insertions and deletion in the
store request. Therefore changes are canceled if the application never calls the store
operation for this graph of objects.

4.5 Delete Objects
When data objects are removed from an indexed property or the value of a simple
property containing a data object is set to null, the associated object is implicitly

Data Object Graphs 13/32

removed from the graph. These operations are performed on the graph of objects. The
framework is not involved in the deletion of objects. It will take care of the deleted
objects during the store phase.

Complex domain models often provide services to remove objects and perform the
associated house-keeping tasks. These operations are wrappers to the functions
offered in the data objects.

4.6 Store Objects
The store operation is the moment when the framework performs most of its
activities. The following steps are done.

1. The client checks if the edited graph contains updated or newly created objects. If
modifications were detected it sends the graph to the server.

2. The server compares the received graph with the original one. All deleted, newly
inserted, and the modified objects are identified and collected. The function is
based on the visitor pattern. An object is deleted if it is part of the original graph
and absent in the updated graph. It is inserted if its identifier is null. It is updated if
its flag “modified” is set to true.

3. The server cache is updated with the object received from the client. The old
version does not reflect the actual property values and are garbage collected.

4. The deleted objects are removed from the database. The new ones are inserted in
the database and the updated ones are committed to the database. The persistence
layer updates the fields used for optimistic locking – either timestamp or version
counter -.

5. The field values used for optimistic locking of newly inserted or updated items are
collected on the server side and sent back to the client. If the server had to modify
properties due to business logic, these changes are also sent to the client through an
application specific protocol. This protocol is simple because each object can
uniquely be identified by its identifier and qualified class name now.

6. The client updates its copy of the data objects with the received updates. The
original values stored in the cache are discarded from the cache and a new copy of
these objects is stored in the client cache.
This step is only performed in client applications having a client side cache.

The store service persists a set of data object graphs where all roots have the same
data object type. The transactional context is the same for all graphs.

4.7 Transactional Context
Server applications handle parallel requests and must provide transactional integrity
on the data objects. The data object framework provides a simple but powerful
approach to concurrent updates. The goal is that two applications cannot modify
simultaneously the same data objects.

1. Graphs of data objects are retrieved from the database. The persistence layer
insures that the retrieval is atomic.

2. The graph of objects is sent to a client for visualization or modification.

14/32 Data Object Graphs

3. The graph of objects is either received from a client or directly manipulated in the
server. The request performs changes on the objects. Each running session has its
own copy of persistent objects. Race conditions are detected at commit time
through optimistic locking.

4. The graphs of modified objects are committed to the database. The persistence
layer insures that the update operation is atomic. If another client has already
committed changes on the same objects an error occurs and the above changes are
discarded7.

5. The local copies are persistent objects are discarded.

This approach guarantees the consistency of a server wide object cache and very good
performance as long as contention is seldom as stated in the base assumptions of the
framework.

The approach decouples database transactional integrity from service transactional
integrity. It provides an optimal solution for service oriented approach. A very small
set of services sometimes need sophisticated transactional control. These cases can be
implemented with the above approach and nested transactions.

4.8 Server Cache
The server component provides caching mechanisms to improve responsiveness of the
application. Fetching data from the cache is a magnitude faster as retrieving the same
information from the database. A server side cache has the following requirements.

1. Objects are identified through their identity as defined in assumption Identity.
2. The cache in a multi threaded environment with concurrent accesses and updates.

Either a session based cache or a distributed object cache should be used.
Distributed caches should be compliant with emerging standards as JSR-107.

3. The cache should rollback changes if the transaction is aborted.

The chosen solution implements the following rules.

• Objects are local to each session in the server8. A server can be clustered.

• All retrieve operations are performed against the session cache. The server assumes
that the cache content reflects the objects stored in the database. Therefore at most
one functional server is sole owner of the stored instances. This approach still
allows clustering but discourages design where multiple servers manipulate the
same objects.

• At the start of an update operation, the cache is updated to contain the modified
objects. If the transaction is successful the cache already contains the expected
objects. If the transaction is aborted, the objects are simply flushed from the cache.
Therefore the workflow can continue in the same session without side effects.

The swap of the original objects with the newly modified during the update and the
removal of them after a rollback is realized with the help of the visitor pattern. The

7 This approach is optimal under the constraint that concurrent updates are seldom.
8 Global caches can also be configured. This feature is available in JSR-107 but no used in th is

framework.

Data Object Graphs 15/32

specialized form of the functor9 visitor is used to implement the required routines.
Naturally this solution is so simple to implement only because the framework
assumption about completeness exists.

4.9 Client Cache
The client component provides caching mechanisms to improve responsiveness of the
application. Again fetching data from the cache is a magnitude faster as retrieving the
same information from the server. A client side cache has the requirements similar to
the server side. The major difference is that server cache is mandatory for the
framework correct behavior but the client cache is optional.

1. Objects are identified through their identity as defined in assumption Identity.
2. The cache should work in a multi-threaded environment with concurrent accesses

and updates. Modern client applications are often multi-threaded.

3. The cache should rollback changes if the server request is aborted. Usually failures
are seldom therefore a simple solution is to remove all involved objects from the
cache and request them from the server10.

4. The cache should be compliant with emerging standards as JSR-107.

The cache can also be used as a cheap mechanism to undo changes and revert to
original values. The developer only needs to do a deep copy of the graph and return it
to the user interface instead of returning the graph received from the server.

The same mechanism and implementation is used to update the cache with committed
modified objects. An abort of the transaction does not automatically flush the cache.
The client application logic must explicitly request this operation.

4.10 OJB Dependencies
The design of the framework follows the recommendations of the authors of OJB. The
ODMG transaction, query, and database are wrapped in framework specific classes.
All these classes are defined in one package.

This indirection layer allows to easily switch from ODMG to JDO standard. The same
layer provides support for switching from OJB to other products such as Hibernate or
Top-Link.

Facade abstractions are provided to support multiple logical and physical databases. In
the integration business, communication with other systems is still often implemented
with stagging tables. The facade hides the used databases and provides a clean logical
view for the client components.

9 A functor is an object-oriented representation of a function. The framework uses the functor
package of the Jakarta project.

10 The best approach is to let the application decides that is the best reaction. The framework provides
basic operations to revert local changes and reload from the server.

16/32 Data Object Graphs

5 Extensions

5.1 Lightweight Types
Data objects can be quite heavy. It is suboptimal to transmit them to create a
navigation tree or an overview of a graph. A tree has a lot of nodes and displays a very
small number of properties and the hierarchical links between nodes. The lightweight
object pattern provides an efficient way to transmit this information to the clients. A
lightweight representation of each data object type displayed in an overview is
defined. It contains only the data shown on the screen. Often these lightweight objects
are read-only. The main design consideration of lightweight objects is retrieval speed
and partial graph representation especially when complex queries are used.
Lightweight instances should never have a reference to their data object to avoid to
transmit them over the wire when the lightweight graphs are sent.

The MDA code generator described in “MDA Generation” transparently generates all
defined lightweight classes and the associated transformation classes. The transform
classes create the lightweight representation of a data object graph.

Because lightweight objects are separate classes, they can be mapped to their subset of
attributes on the database tables. OJB supports directly multiple mapping on the same
physical table. The application is responsible to synchronize the two representations
when modifications are performed on one instance. The best approach is never to
cache any lightweight object because they could represent partial graphs depending on
the query used to compute them. Instead of trying to transform complex topologies
through an injective function, the information is retrieved each time from the
database.

Lightweight types should only provide read access to their properties.

5.1.1 Framework Dependencies
The lightweight representation has common attributes with its data object. The
transformation classes are available to synchronize the lightweight instances with the
data object instances. The framework never references lightweight instances.

5.1.2 Restrictions
If the application supports editing of lightweight items, it must synchronize the data
objects in the program. The preferred way is to update the data objects with the
modifications. Upon completion the above described mechanism is used to update the
data objects and synchronize the lightweight representations.

Applications can hand code the retrieval of lightweight objects to increase the speed
of the application. Such custom operations should avoid to store the objects in the
cache. This strategy completely shields the framework from the application specific
retrievals and no special measures need to be taken to synchronize the various views
on the database.

5.2 Shallow Objects
A new requirement was found during productive use of the framework. Some

Data Object Graphs 17/32

developers need to update one data object without having to retrieve or send the
complete graph to the server. This requirement opens interesting challenges. Now the
framework must replace one object in a graph and conserve its topological structure.

The framework manipulates three kinds of objects: data objects, lightweight
representations and the shallow view on an object. The table below shows which
functions are available for each kind.

Function Full Light Shallow Comments
Retrieve yes yes yes The result of a query request
Insert yes no no Creation of a new object
Store yes no yes Commit of all changes
Delete yes yes no Deletion of an object in database

Table 1 Shallow & Full Functions

Store operations on shallow objects are supported but are seldom in real applications.
Insert operations on shallow object are dangerous and therefore prohibited because the
object could not have mandatory nodes.

Ergonomic studies show that in place edition of attributes in the navigation tree is too
complex for casual users. Therefore the lightweight objects can only be retrieved or
deleted.

The shallow feature could easily be implemented with the help of the MDA generator.
A shallow property extract and update service must be generated for each data object
type supporting shallow operation. The extract operation creates a copy of the object
with all relevant simple and indexed properties. If a property is relevant or not is data
user definition. The update operation performs the inverse function. These two
operations synchronize the shallow copy of the object with the original one.

The only drawback is that shallow update operations must separately be programmed
otherwise the framework will assume that the missing objects have been deleted.
Therefore support of shallow operations duplicates the number of CRUD methods for
a specific data object type.

5.3 Queries
Complex applications require domain specific queries to retrieve a set of relevant
data. Often a user selects only the data objects relevant for the current business case he
is working on. The server should provide mechanisms to realize custom specific
inquiries and return the set of found objects.

Queries should return domain objects and not columns. Lightweight objects can be
used to return a subset of the attributes. Queries can also be used to return incomplete
lightweight subgraphs as search results. Lightweight representation is preferred
because partial graph editing is not well supported because the semantics of the delete
operation is not clear.

Reports are realized with reporting tools and should be separated from the core
functionality of the application. As much as possible reports should be off line.

18/32 Data Object Graphs

5.4 Derived Attributes
Attributes of a data object can be the result of a computation. A computation is a
formula with variables. A variable is another attribute either computed or not and
mathematical operators.

Simple formulas such as aggregation or propagation of attributes can directly be
declared in the data objects. More complex formulas should always be declared in a
service class as suggested in the SOA approach.

A framework to implement a powerful yet simple computations is beyond the goals of
this article. The description of such a framework can be found in the article “Data
Objects Derived Attributes” [mb-attributes-2003].

5.5 Reference Codes
A reference code is an enumeration of values defining a domain relevant type and its
legal values. For example the set of currencies defined in the related ISO standard is a
reference code. Each code is identified by the type it belongs to – represented as a
Java class - and a unique code identifier. Reference codes can have a hierarchical
structure. For example the department structure of a worldwide company can be
represented through a hierarchical reference code.

The framework knows the concept of reference code and uses the reference code
manager to access values of codes. The implementation of the framework never stores
reference code objects or send them over the wire. Only the identifier of the code is
stored or transmitted. Reference code objects are always transient ones. The mapping
to the type is done implicitly.

• The database definition connects the identifier of the code to the reference code
table. Therefore persistent properties can only contain persistent reference codes.
Technically codes are mapped to 1-0..1 or 1-1 relationships.

• The transformer factory knows the dependency between identifier and type. The
name of the identifier is hard coded in the transformation routines. This approach is
congruent with the concept of a reference code being a typed business enumeration.

• Transient reference codes are build in the application logic and are not part of the
data object graph framework.

• The framework provides services to transfer reference codes from the server to
clients. Incremental updates are available to minimize network overhead.

Data Object Graphs 19/32

6 Architecture
The architecture describes the structure of our frameworks and the main abstractions
constituting it. The core of the framework is two interfaces defining the responsibility
of a data object class and the handler manipulating these objects, and a set of classes
providing default implementation of the interfaces for the client and for the server.
Support functions are provided in the data objects and are generated through MDA
technology and the adequate cartridges responsible to generate the source code and
configuration artifacts.

The major goal of the framework is to minimize the number of constraints on the data
object classes. Therefore the approach using a common ancestor is not an option. The
interface variant was selected. Because the source code of the classes is generated no
coding overhead is introduced to implement the interface.

The second goal was to minimize the number of concepts used for the realization of
the above described mechanisms. Two main patterns are webbed in the source code.
The visitor pattern is used to traverse trees and perform operations on them. The
facade pattern hides the underlying layers from the application. This design is a nice
example of a clean and lean architecture.

6.1 Data Object Identifier
A data object identifier uniquely identifies a data object in the application or in the
database. The class is immutable to reflect its role as identifier.

• Class: The property defines the class of the data object.

Illustration 5 Business Objects Overview

20/32 Data Object Graphs

• Identifier: The identifier is the unique key for a data object of the above type.

6.2 Data Object Type
A data object type defines the characteristics of a data object type. The following
attributes are defined.

• The class of the data object class.

• The class of the lightweight representation class of the data object.

• An optional class defines the interface of the data object type.

• A flag indicating if data object type instances are used as roots or not.

6.3 Data Object Interface
Business object classes must implement the data object interface. This small interface
allows the framework to manipulate instances.

• Identifier property: The property is read-only. The framework uses reflection to
modify it. The user application has not possibility to change it.

• Modified property: The property is modifiable. An update operation sets the
modified flag of the interface. Immutable data object properties do not influence
the interface.

• Timestamp property: The property is modifiable. The framework uses reflection to
modify it. The user application has not possibility to manipulate it.

• Foreign key properties: Foreign keys should be defined as anonymous fields. They
are not visible in the data object.

The interface can be extended to support additional properties common to all data
objects of an application. For example the identifier of the user having performed the
last update on the object is such an attribute.

6.4 Lightweight Data Object Interface
Lightweight data object classes must implement the lightweight data object interface.
This small interface allows the framework to manipulate lightweight instances.

• Identifier property: The property is read-only. The framework uses reflection to
modify it. The user application has not possibility to change it.

• Foreign key properties: Foreign keys should be defined as anonymous fields. They
are not visible in the data object.

6.5 Reference Code Interface
Business objects often has properties with a domain model type. These types represent
a set of legal values for a domain specific type system. Our framework provides an
elegant mechanism to model these types. Two interfaces are provided.

• The reference code interface for regular reference code. A reference code has an
identifier, a short description, a extended distribution, and a sort order.

• The hierarchical reference code interface for hierarchical reference code. The

Data Object Graphs 21/32

interface is an extension of the regular reference code. It has an additional property
defining the owner of the code.

6.6 Data Object Handler Interface
The data object handler provides services to retrieve, store, and delete a graph of data
objects given its root. It also manages the content of the data object cache.

• Retrieve the graph of data objects given the identifier and the class of the root
object. The handler first tries to retrieve the graph from its cache. If not found it
forwards the request to the underlying layer for execution.

• Retrieve the graph of lightweight objects given the identifier and the class of the
root object. The handler first tries to retrieve the lightweight graph from its cache.
If not found it forwards the request to the underlying layer for execution.

• Store the graph of data objects in the database. Deleted objects are first removed,
new objects are inserted and modified ones are updated in the persistent store. The
new objects receive their unique identifier. Timestamps are updated. Upon
successful completion the new identifiers and timestamps are sent back to the
client to synchronize its copy of the graph with the one now stored in the database.

• Remove the graph of data objects with the given root identifier. All objects are
deleted in the database. The objects are removed from the server cache.

• Create a deep copy of a graph of data objects. This function ensures that clients
never manipulate the original objects.

• Update or deletion of lightweight objects are not provided because the semantic of
these operations cannot be defined without side effects.

• Manage the cache where the objects are cached. It is possible to find out if an
object is in the cache and to flush the cache.

The handler has very few constraints on the object it manages.

• The managed objects must be either data object or lightweight objects.

• Each data object type must register its visitor with functor class. This visitor is used
to perform all manipulations needed to synchronize data object graphs with their
persistent representation. The visitor must provide a default constructor. Because it
is in general automatically generated through our MDA tools, the user has not
additional work.

• The data object must provide a public method accept with one parameter of type
visitor. The handler calls this method through reflection.

At least two implementations of the handler exist. The server side implementation
maps the services to the persistence methods of the OJB component. The client side
implementation maps the same services to the transport layer to propagate the requests
to the server. This approach allows to plug tailored implementation for example to
minimize the network latency.

Both implementation uses the visitor pattern to traverse the graph. Variants of the
visitor functor specialization are used to perform the required actions on the nodes.
The used Java environment does not support generic therefore the implementation

22/32 Data Object Graphs

must manipulate classes implementing the visitor pattern without knowing them at
development time. The current solution uses the reflection package and the
assumption that the method used to traverse the graph has the signature.

void accept(Visitor visitor);

The handler is configured with the corresponding visitor with functor functor and call
the accept method on the data object to manipulate. The logic is defined in a strategy
class. Lazy evaluation of relations is delegated to the persistence layer, e.g. OJB.

6.6.1 Cascaded Deletion
The UML standard defines the concepts of composition and of aggregation.
Composition implies cascaded deleted of the owned objects when they are removed
from the owning object. Aggregation leaves the decision to the application. The data
object handler always delete owned objects from the database when they are removed
from the owning object. This approach follows the closure rules of ODMG and JDO
standards.

This mechanism is not adequate for all applications. Two solutions are provided. First
the developers can extend the strategy class to handle these situations. Second an
extension of the framework support reflective behavior through a meta model
describing the data objects. This solution is extremely flexible but more complex to
deploy.

6.7 Persistence Manager
The persistence manager defines a thin abstraction layer above the chosen persistence
framework. It heavily uses visitors and function objects to fulfill its responsibilities.
Additionally it hides the idiosyncrasies how multiple databases can be accessed
concurrently.

The package provides wrapper for the transaction and query classes used in the
persistence framework. Delegation is used to hide these classes and method
signatures. Therefore if the framework is exchanged the client application does not
need to edit its source code but only recompile all classes.

The query classes are used to program application specific search functions to retrieve
specific graph of data objects.

6.8 Reference Code Manager Interface
The reference code manager interface defines the services provided to manipulate a
set of reference codes. A manager can delegate the management of reference code
types to another reference code manager, building a hierarchical structure of
managers. This approach scales up and allow the integration of multiple data object
models.

Reference codes are always loaded when the application is started to enhance
responsiveness of the application. No differences exist between reference codes and
regular enumeration types.

Data Object Graphs 23/32

6.9 Caches
Caches are no more part of our framework but are provided as pluggable components.
The framework communicates with the cache to ensure they are in sync with the data
layer and the database. These management activities are necessary because the
manipulated graphs of data objects are always copies of the ones stored in the cache.

6.10 Detailed Design
The detailed design is defined in the JavaDoc comments of the source code. The
documentation is available in XHTML and PDF formats.

The documentation and source code are checked for completeness and quality
assurance with DocCheck, PMD, JavaNCSS and Jdepend.

24/32 Data Object Graphs

7 Best Practices

7.1 Models
Domain models should be object-oriented and cleanly defined. Commonality should
explicitly modeled as interface and abstract classes. Programmers often defines too
many attributes when using code generators. Care should be taken to define only
properties needed in the application.

Each entity should have a primary technical key used only in the application and not
visible to the users. This approach guarantees that any instance can be uniquely be
identified and hinders the users to connect their domain model to a technical key.

Framework functions should access properties through reflection mechanisms and
avoid calling the getters and setters. User interface programmers often tend to hide
data functions in accessors. This practice is bad design but a fact of life. The
framework should be resilient to such designs if the cost is not too high.

The developer is responsible to connect new root objects with objects owning them.
An approach is defined in the explorer framework.

7.2 Coding Conventions
Business object classes should use well-known naming conventions. The authors
encourage the use of Java beans conventions. Indent the source code following the
rules defined by Sun Inc.

When using collections instead of arrays for indexed properties use the conventions
defined in the Jakarta “Bean Utils” project.

7.3 Queries
Complex queries, in particular complex searches of relevant data containing only
matching objects are best implemented with hand coded SQL statements. The speed
improvement is tremendous. In a management application for insurance contracts the
gain was a factor hundred. Regular retrieval operations should always be realized
within the framework. This approach minimizes maintenance costs without impeding
responsiveness of the application11.

Best practice is to retrieve most of the fields for all objects in one single query to
minimize database overhead. The hierarchy of lightweight data objects is constructed
in the program. Instantiation of objects and associated relations are best done in the
code. This approach is an extension to the “Fast Lane Reader” pattern described in
the J2EE blueprints. The difference is that our variant returns a forest of data objects
instead of a tabular representation.

As stated above the constructed lightweight objects are not cached on server side. This
design decision eliminates the design of a coherence mechanism between the

11 If the query statements are written using for example the criteria classes available in OJB, they
would be portable between various databases. OJB will take care to translate the abstract query into
the specific SQL dialect of the target database. Simple online reporting tasks should also realized
with the same mechanism.

Data Object Graphs 25/32

lightweight and data application models12.

7.4 Framework Manipulations
The framework often manipulates data object instances for example when
transforming the instances into CORBA objects. The preferred way to access
properties should be through reflection. Calling the manipulators methods either
directly or through introspection could trigger undesirable side effects13.

7.5 Database
Modern databases have advance features for automatic generation of technical
primary keys. These features should be used instead of creating in the code the
identity keys.

12 This decision was refined during the development and deployment of a large contract management
application for insurance companies. Practice showed that trying to synchronize the lightweight
model with the business model was very complex and did not bring any advantages. Not caching
lightweight objects simplifies the design in the context of a threaded client server application.

13 This approach is used in OJB to insure best conversion between business object and database. If the
design of the application guarantees no side effect introspection can be used.

26/32 Data Object Graphs

8 Future Directions

8.1 Introduction
A detailed discussion of learned lessons in one project using this framework can be
found in “Lessons learned in Insurance Project”. One major finding in the project is
that performance is NOT a problem. Here some empirical measurements.

• Queries were used to retrieve a forest of lightweight objects fulfilling the
arguments of the request. For testing purposes we defined general queries returning
a set of about one thousand trees of lightweight objects. The number or returned
lightweight instances is about twenty thousand and each instance has an average of
four attributes and one link to another object.
The retrieval of the data for a DB2 database through OJB, post processing of the
tree to compute derived attributes, transformation of all instances to their CORBA
representation and transmission to the client application took in average 8 seconds
on a personal computer. The bottlenecks are the database itself, and the CORBA
layer. In real environment the bottleneck will often be the network.

• Retrieval of a tree of about two hundred of data objects with a total of four
thousand attributes needs in average four seconds on the same personal computer.

• The same application servers run on a productive UNIX server are a factor two to
four faster. Exact measurements were not possible due to lacking performance
monitoring tools in the production environment.

The server application development trend is to delegate more and more functions to
frameworks and libraries similar to the one described in this text. Integration of our
data object graph framework in controlled environments such as JDO, J2EE and
Tomcat will increase this trend.

8.2 Improvements
The framework was used in a complex mission critical contract management
application in the insurance and banking domain. The code should be refactored,
documented and released. The framework currently tracked more precisely the state of
a data object, and uses an internal model instead of a visitor based mechanism to walk
through the graph. This exact tracking is superfluous.

Caching mechanisms should be based on the emerging JSR standards. Open source
implementation are available and should be introduced in the next release of the
product.

The framework ideas should be published in technical editorials and presented in
internal workshops. The actual version is used in mission critical applications. A
extensive search in the literature and in Internet has revealed that no similar
framework is currently available as open source.

8.3 Additional Mechanisms
The query support of the framework is minimal. Mechanisms should be designed to
support generic search queries for all data object types used as roots. For example
“query by criteria” of OJB could be used as a basis.

Data Object Graphs 27/32

The generator could be extended to generate a generic client interface to view graphs
for a given domain. This client simplifies the verification of the data model before
full-fledged client applications are available.

The generator could also be extended to generate user interface support classes.

8.3.1 Graph Visualization
Often it would be helpful to visualize complex graph structures during development
or maintenance. Visual representations greatly simplify analysis of problems in the
application or in the database. The visualization tool should display any graph without
programming effort. The user should only need to configure its data object graph
structure.

The explorer framework could be used to realize this visualization tool.

8.3.2 Distributed Transactions
Currently it is not possible to define a transaction spanning multiple physical
databases. Transactions work only on one database or on a set of logical databases all
located in the same physical database. Some applications have requirements to
support two phases commit on multiple physical data sources.

The simplest solution will be to deploy the server side part of the framework in a
managed environment such as a J2EE container. These environments provide a
transaction monitor with two phase commit features. The used persistence layer OJB
already provides extensions for such controlled environments. The effort to
implement this solution is about one week including testing and packaging.

28/32 Data Object Graphs

9 Implementation

9.1 OJB Support
The OJB library hooks its own collection classes when retrieving relationships from
the database. These classes tracks changes to handle object removal. The framework
has similar features. The integration of OJB must avoid interferences between the two
frameworks.

• The DOG framework should carefully manipulates attributes containing foreign
key values. The best approach is to defined such fields as anonymous to avoid
tampering of their values in the application. OJB uses these fields to generate
appropriate insert, update and delete statements for dependent objects – meaning
part of a relationship with cardinality higher than one -.

• The DOG framework always manipulates copies of object trees retrieved through
OJB. Data objects all support deep copies of graphs. The implementation of the
clone operation removes the OJB specific removal aware collections.

• Trees available in clients or sent from the client are always copies and not orginal
ones. The client never needs to perform a deep copy before manipulating objects
through the DOG framework. As a bonus no dependencies exist between client
applications and OJB libraries.

• Server functions should always make a deep copy of the tree before manipulating it
using DOG services. If not DOG functions are used the deep copy is optional.

• Shallow operations always copy modified data back to the deep copy of the
original tree before calling store operations.

• Each time a copied tree of object is stored, the original objects should be removed
from the cache and replaced with the copied instance. This action guarantees that
OJB cache never contains obsolete objects. The DOG concept of root object is
used to remove the transitive closure of all objects in the graph and replace them
with their copies. Before the changes are propagated to the client the changes must
be flushed to the database to guarantee that optimistic locking timestamps or
counters and new identifiers are generated14.

Analysis is under way to determine if a tighter integration would diminish the
persistence overhead.

9.2 Hibernate Support
To be written.

9.3 C++ Support
The DOG framework is also available in a C++ implementation. The coding
guidelines are similar to the ones of Java.

• Package names are mapped to name spaces. The directory structure is the same. A
class is defined in a header file and an implementation file. The public declarations

14 This approach is compatible with container managed transactions. The framework does not need
any knowledge of the transaction mode of the executed service.

Data Object Graphs 29/32

of a package are provided in a separate file name including the public and protected
classes but not the package and private classes.

• Method names are the same. Java methods implementing operations available as
operators in C++ are mapped to C++ operators.

30/32 Data Object Graphs

10 Glossary
CORBA Common Object Request Broker Architecture

CRUD Create, Read, Update, Delete

DAO Data Access Object

DOG Data Object Graph

DTD Data Type Definition

DTO Data Transfer Object – the older terminology for this pattern
was value object – The pattern is sometimes called Transfer
Object

IDL Interface Description Language

J2EE Java 2 Enterprise Edition

J2SE Java 2 Standard Edition

JDBC Java Data Base Connection

JDK Java Development Kit

JDO Java Data Object

JMS Java Message Service

JRE Java Runtime Engine

JSP Java Server Page

MDA Model Driven Architecture

MOF Meta-Object Facility

ODMG Object Database Management Group

OJB Object/Relational Bridge or Object Java Bridge

OMG Object Management Group

O/R Object / Relational

POJO Plain Old Java Object

PIM Platform Independent Model

PSM Platform Specific Model

SDO Service Data Object

SOA Service Oriented Architecture

UML Unified Modeling Language

USDP Unified Software Development Process

XMI XML Meta-Data Interchange

Data Object Graphs 31/32

11 References
The framework could only be realized with the help of a set of wonderful open source
projects. We are grateful to the Apache foundation and the Jakarta project for their
powerful applications and libraries.

BeanUtils manipulation library for Java beans
http://jakarta.apache.org/commons/beanutils

Commons Log Common logging interface package for Java Applications
http://jakarta.apache.org/commons/logging

DocCheck quality insurance for detailed design documentation
http://java.sun.com

Eclipse Java development environment
http://www.eclipse.com

Graphviz creates the technical graphs used in this document
http://www.research.att.com/sw/tools/graphviz

Log4J logging package for Java applications. Variants are provided
for C++, PHP, etc.
http://www.apache.org/logging

OJB ODMG 3.0 and JDO compatible persistence layer
http://db.apache.org/ojb

Validator validation framework
http://jakarta.apache.org/commons/validator

Velocity code generation template engine
http://jakarta.apache.org/velocity

http://jakarta.apache.org/commons/beanutils
http://jakarta.apache.org/velocity
http://jakarta.apache.org/commons/validator
http://db.apache.org/ojb
http://www.apache.org/logging
http://www.research.att.com/sw/tools/graphviz
http://www.eclipse.com/
http://java.sun.com/
http://jakarta.apache.org/commons/logging

32/32 Data Object Graphs

Bibliography
Brose2001: Gerald Brose, Andreas Vogel, and Keith Duddy, Java Programming with
CORBA, 2001
mb-attributes-2003: Marcel Baumann, Business Object Derived Attributes, 2003

Index of Tables
Table 1 Shallow & Full Functions 14

Illustration Index
Client /Server Business Object Graphs 4
Transformation Process 7
Original Object Graph 8
Modified Object Graph 8
Business Objects Overview 16

	1 Introduction
	2 J2EE Blueprints
	3 MDA Generation
	3.1 Features
	3.2 MDA Model
	3.3 Semantics

	4 Update Mechanisms
	4.1 Assumptions
	4.2 Retrieve Objects
	4.3 Insert Objects
	4.4 Modify Objects
	4.5 Delete Objects
	4.6 Store Objects
	4.7 Transactional Context
	4.8 Server Cache
	4.9 Client Cache
	4.10 OJB Dependencies

	5 Extensions
	5.1 Lightweight Types
	5.1.1 Framework Dependencies
	5.1.2 Restrictions

	5.2 Shallow Objects
	5.3 Queries
	5.4 Derived Attributes
	5.5 Reference Codes

	6 Architecture
	6.1 Data Object Identifier
	6.2 Data Object Type
	6.3 Data Object Interface
	6.4 Lightweight Data Object Interface
	6.5 Reference Code Interface
	6.6 Data Object Handler Interface
	6.6.1 Cascaded Deletion

	6.7 Persistence Manager
	6.8 Reference Code Manager Interface
	6.9 Caches
	6.10 Detailed Design

	7 Best Practices
	7.1 Models
	7.2 Coding Conventions
	7.3 Queries
	7.4 Framework Manipulations
	7.5 Database

	8 Future Directions
	8.1 Introduction
	8.2 Improvements
	8.3 Additional Mechanisms
	8.3.1 Graph Visualization
	8.3.2 Distributed Transactions

	9 Implementation
	9.1 OJB Support
	9.2 Hibernate Support
	9.3 C++ Support

	10 Glossary
	11 References

