
Data Object Attributes 1/17

Data Object Attributes
How to Initialize and Compute Attributes

Marcel Baumann
Version 1.0.1

Table of Contents
1 Introduction...3
2 Assumptions..4
3 Use Cases..5
4 Concepts..6

4.1 Attribute Kinds..6
4.1.1 Regular Attributes..6
4.1.2 Derived Attributes..6
4.1.3 Control Attributes..6

4.2 Validation Rules..7
4.3 Formulas..7

4.3.1 Initializations..7
4.3.2 Derived Attribute Formulas...7
4.3.3 User Interface Hooks..8

4.4 Business Object Initialization..8
4.4.1 Creation of Business Objects...8
4.4.2 Initialization...9
4.4.3 User Preferences..9
4.4.4 Reset Default Values..9

5 Meta-Model Definition..9
5.1 User Input ...9
5.2 Best Practices...10

6 Architecture...11
6.1 Meta Model Approach...11
6.2 Attribute Functions..12
6.3 Registration of Formulas...13
6.4 Registration of Business Objects...13
6.5 Visitors...14
6.6 Code Generation..14

6.6.1 Jakarta Framework Integration..14
6.7 User Interface Meta Data ..14

7 Solutions..15
7.1 Pragmatic Approach without Meta-Model..15

7.1.1 Concepts...15
7.1.2 Realization...15

7.2 Persistent Derived Attributes...15
7.2.1 Concepts...15
7.2.2 Realization...16

7.3 Replication...16
7.3.1 Concepts...16

2/17 Derived Attributes

7.3.2 Realization...16
8 Glossary...16
9 References...17

Data Object Attributes 3/17

1 Introduction
When developing an application that implements non-trivial business logic, a good
strategy for tackling complexity and improving maintainability is to design and
implement a domain model, which is an object model of the application's problem
domain.

Business logic, in a very broad sense, is the set of procedures or methods used to
manage a specific business function. Taking the object-oriented approach enables the
developer to decompose a business function into a set of components or elements
called business objects. Like other objects, business objects have identity, state and
behavior.

To manage a business problem you must provide the desired functionality. The set of
business-specific rules that help identify the structure and behavior of the business
objects, along with the pre- and post-conditions that must be met when an object
exposes its behavior to other objects in the system is known as business logic.
Complex domain model contains complex business object topologies and numerous
properties defining their state. These properties describe aspects of the domain model
and are tremendous importance to the users of the application. Some of them are the
result of a mathematical computation. Such attributes are often called derived
attributes.

The business logic provides major functions to

• Validate attributes, business objects and graphs of business objects. Only complete
and consistent graphs should be stored or handed over to external programs.

• Compute the value of derived attributes. Computation is defined with formula
having dynamic variables and mathematical operators. Variable are attributes of the
same or other business objects. These variables can again be either computed or
not. All computations are handled as executable formulas applied on a set of
connected business objects.

The following questions must be answered in such an environment.

• Which is the validation rules to compute for a selected attribute?

• What is the event triggering the validation of an attribute?

• Which is the formula to compute a selected derived attribute?

• What is the event triggering the computation of a derived attribute?

• How are derived attributes initialized?

• Should derived attributes be stored in the database?

This document tries to provide pragmatic answers to the above questions. It describes
an approach to streamline the implementation of derived attributes and their
computation.

Intended audience is software developers who want to use the framework or extend it
further.

4/17 Derived Attributes

2 Assumptions
The described approach was developed to respect a set of hypothesizes. The following
assumptions are fulfilled in the target applications.

• The validation rules and formulas can be changed during the lifetime of the
application. For example another computation rule must be applied if a business
status in the object has a new value.

• The architecture of the framework uses the SOA approach. Computation rules are
often defined as business rules and change upon time. A common requirement of
business objects is that they be reusable by different components of the same
application or by different applications. Business objects are able to be used by
various components when they are developed in a standard way and run in an
environment that abides by these standards.

• Simple formulas can directly be implemented in the business object classes to
augment the legibility of the source code.

• A common characteristic of business objects is that they often operate on shared
data. In this case, measures must be taken to provide concurrency control and
appropriate levels of isolation when computing derived attributes.

• The domain objects implement the Java bean coding conventions. They provides
accessors methods to their properties and support change event propagation.

The following terminology is used in this document.

• Attribute: A field of a business object containing a value. It is also called property.

• Derived Attribute: An attribute, which value is computed from other attributes and
a mathematical formula.

• Control Attribute: An attribute, which value defines if a set of attributes is active or
not. The set is said to be dependent of the control attribute value. At any time at
most one control attribute owns any attribute.

• Inactive Attribute: An attribute which is currently disabled through its control
attribute. An inactive attribute should not be displayed or stored in the database.
Ideally its value should be reset to null. An inactive attribute is never visible on the
user interface.

• Active Attribute: An attribute currently in use in the application is active. When an
attribute changes its state from inactive to active, it must be initialize to its default
value. If the attribute is a derived one, its value must be computed.

• Constrained Attribute: A constrained attribute has its legal value range constrained
by the value of a control attribute.
A constrained attribute can also be a control attribute.

• Formula: A formula is a mathematical function performed on a set of attributes
and returning the new value of a derived attribute. A design variant is to group all
the formulas of a business object type together.

• Validation: The validation is a boolean function checking if the value of the
attribute respects the constraints of the business domain model. Validation rules

Data Object Attributes 5/17

never change the value of any attribute. No validation rules should exist for a
derived attribute.

• Lexical and Syntax Validation: The lexical and syntax validation verify if the
attribute is mandatory or not and if the attribute value is within the requested
range. This information is often used in the interface to provide visual feedback
to the user. Lexical validation should be performed during user input to provide
adequate feedback to him.

• Semantic Validation: Once the lexical validation is successful, the attribute
values can be validated against domain business rules defining constraints
between attributes. This information is often used in the interface to provide
explicit error messages to the user and provides hints how to correct the
problem. Semantic validation should be performed in the client and server
applications.

• Reference Code Type: Reference code types define an enumeration of legal values
seen from a business view point. Examples of reference code types are ISO
currencies or ISO paper sizes. These sets of values often change over time and a
mechanism must be provide to select only the values currently active. Reference
codes are the ideal construct to define a range of values for an business object
attribute.

Complex application models are often modeled with derived control attributes. In
other words the domain model defines master control attributes for the overall
behavior, and local constrained control attributes for specialized behavior. If the
analyst is using state machine to model his domain the above logic can be mapped to a
hierarchical state machine.

The user interface needs information such as grouping of attributes or if an attribute is
editable or not. This information is part of the meta model of the user interface but not
of the meta model of the business layer.

3 Use Cases
The following use cases were identified. Each of them requires derived attribute
functionality.

• Compute new values when a property is changed. Each time a given property
changes a set of formulas are computed and their result is written to the associated
derived attribute.

• Initialize a set of derived attributes when a control property is changed. Each time a
given control property changes a set of properties is initialized. The value of the
derived attribute is defined through a formula. The result can be a default value, the
result of a computation, or a flag indicating the property is disabled.
Only the set of newly activated attributes should be initialized. Values already
inputed from a user should never be overwritten.

• Initialize a graph of newly created business objects. Upon creation of a set of
connected business objects, they must be initialized. This initialization could
trigger the computation of derived attributes.

The following use cases are not only for derived attributes but consider similar

6/17 Derived Attributes

situations.

• Apply user preferences to a graph of connected business objects. The mechanisms
to initialize business objects can be used to apply user preferences.

Overall initialization should be performed with the help of an initialization visitor.
Property initialization upon the change of a control property should be performed with
derived attribute mechanism.

4 Concepts

4.1 Attribute Kinds

4.1.1 Regular Attributes
Regular attributes are fields containing data which can be edited from the user. An
attribute has always a type.

A subset of regular attributes has reference code as their type, so their value range is
predefined. The user interface often uses drop down lists to select a legal value.

4.1.2 Derived Attributes
Derived attributes can be identified either statically or dynamically. Static derived
attributes are class fields, which are always computed.

Dynamic derived attributes are business object fields, which are sometimes computed.
The decision if they are computed or not is defined in a business rule and can only be
evaluated during runtime. Care should be taken to insure that the decision if an
attribute is derived or not can always be computed without implicit knowledge of the
history of the object. The business rule uses values of other properties to generate its
output.

Derived fields should be transient. The only exception is when the data is required in
the database for reporting purposes.

As a remark static derived attributes are a lot easier to verify against the requirements
and maintain than dynamic ones.

4.1.3 Control Attributes
The main feature of a control attribute is the function defining which attributes are
activated or deactivated when its value is changed. The framework assumes that an
attribute is controlled by at most one control attribute.

Set of controlled attributes = function(state)

Set of activated attributes = function(new state) – function(old state)

Set of deactivated attributes = function (old state) – function (new state)

The framework must provide support for the following functions.

• Retrieve the set of control attributes for a given state of a control attribute

• Retrieve the set of activated attributes when changing from an old state to a new

Data Object Attributes 7/17

state.

• Retrieve the set of deactivated attributes when changing from an old state to a new
state.

• Set the value of all deactivated attributes to null.

• Initialize and apply user preferences to the set of activated attributes, which are not
derived attributes. Activate the computation formula and triggers the computation
for all activated attributes being derived ones.

It is not of the responsibility of the framework to detect computation formulas
requiring attributes being currently deactivated.

4.2 Validation Rules
To be written.

4.3 Formulas
Formulas implement business logic at property level. This business logic should be
implemented in services following the service oriented architecture paradigm. If
wanted the computation of a business rule can be requested through the service. But
registration mechanisms hugely simplify the firing of all involved business rules if
triggers are defined in various components of the applications. As a standard example
the rules should be applied in the client and in the server applications.

The following rules were identified.

• Formulas are defined on attributes. Attributes belongs to business object types.

• Trigger sources are attributes. Attributes belongs to business object types.

• Paths are relative from the point of declaration. Paths use positional notations.
Special constructs are available to define paths applicable on all instances of a
collection.

4.3.1 Initializations
To be written.

4.3.2 Derived Attribute Formulas

Aggregations
An aggregation formula computes the sum of a attribute value over a set of business
objects. Instances are stored in a collection. Below some formula examples are given.

Aggregated attribute = sum (a(i)), 0 <= i < size()

Aggregated attribute = min (a(i)), 0 <= i < size()

Aggregated attribute = max (a(i)), 0 <= i < size()

The owner of the aggregated property also owns all instances involved in the
computation. The accessed indexed properties are read using the provided accessors.

The trigger is the modification of the involved attribute in one of the owned object

8/17 Derived Attributes

and is propagated using the Java bean updated event.

Propagations
A propagation formula computes the new value of an attribute over a set of business
objects. The instances are stored in a collection.

Propagated attribute(i) = function (lead attribute, size()), 0 <= i < size(0)

The owner of the lead property also owns all instances which attribute is updated. The
accessed indexed properties are written using the provided accessors.

The trigger is the modification of the lead attribute and is propagated using the Java
bean updated event.

Computations
Computations are mathematical formulas of any complexity. The only natural
restriction is that circular references are prohibited. Usually the computations are
coded as Java methods in the application. Hooks are provided to scripting languages
to enable developers to formulate the computations in scripts. We recommend the use
of the “Bean Shell” language to write complex scripts.

All functions are provides as instances of various functor classes. The Jakarta functor
package is used to provide this functionality. Compositions of primitive functions in a
more complex one is supported as operators of functors. The functor package provides
all services to implement a functional programming model.

4.3.3 User Interface Hooks
A user interface dialog or view contains a set of properties. Two modes exist. Either
the application computes the derived attributes each time a property is modified or
only upon successful completion of editing activities. Both variants are realized with
the same code. The first approach uses a copy of the business object, the second one
directly manipulates the original object.

Each time a property is modified, a change event is triggered and propagated to the
derived attribute calculator. The manager selects all functors registered for the
property belonging to the business object type. Each functor is executed. The order of
execution is undefined.

This mechanism also works for in line editing in table views.

4.4 Business Object Initialization

4.4.1 Creation of Business Objects
The service oriented architecture requests a factory for the creation and initialization
of new business objects. The factory is also responsible to create more complex
business object graphs.

The creation process instantiates new objects, initialize them and applies user
preferences on them. These operations should be under full control of the factory to
insure consistent data upon a creation request.

Data Object Attributes 9/17

The user preferences aspect must be an optional one to allow creation of systems from
over systems or through a workflow system without an user being logged in.

4.4.2 Initialization
The initialization of newly created business objects under responsibility of the factory.
The requirements should specify for each attribute its initial value.

If necessary the derived attribute computation rules must be activated before the
initialization process is started to insure consistent data. Initialization is orthogonal to
the business object architecture and derived attributes framework.

The initialization process should be implemented as a visitor traversing the tree of
business objects and setting each attribute to its default value. This approach is more
flexible than to set the values in the constructor. Complex applications often require
different initialization based on the origin of data. Examples are migration of data
from other systems could require different initialization rules or different
initializations based on control attributes of the owning business object.

4.4.3 User Preferences
User preferences are default values overwriting the application default values. The
same approach as for initialization should be used. A visitor traverses the tree of
business objects and overwrites the attributes for which the user has defined a custom
default value. Preferences are orthogonal to the business object architecture and
derived attributes framework.

Preferences can be organized in hierarchies. For example the department of the
employee can provide preferences to avoid that each user has to define the same
values in his user preferences but still allow a user to overwrite the department values.

4.4.4 Reset Default Values
User friendly applications often provide a mechanism to allow a user to reset the
values of a business objects to the default ones. The default ones are the initial values
or his user preferences if defined. The reset operation is realized by applying the
initialize and user preference visitors on the business object to be reseted.

The factory must provide services to reset individual attribute to their default value if
the application enables and disables dynamically attributes. Either each attribute or
each set of related attributes can be set back to its default value.

5 Meta-Model Definition

5.1 User Input
The software developer should input the description of the meta-model with all its
instances, rules and discriminators. To minimize the initial investment for the
requirements capture tool a user readable format based on XML was selected.

The major complexity is the description of the rules and discriminators. The rule
description must respect the following conventions.

• Properties are described using the syntax of bean utility and velocity packages.

10/17 Derived Attributes

Each property starts with a dollar sign and can uses the optional braces as in
velocity. The notation of the property is the one used in the bean utility framework.

• All properties used in a formula are are relative to the current business object
instance.

• The remaining elements of the formula must comply to the Java syntax.

The discriminator definition must respect the following conventions.

• The discriminator is a list of actual parameters.

• Each parameter has a name, and a value. The user is responsible that the value is
compatible with the type defined in the associated formal parameter.

• The attribute for which the rules are specified must have a compatible
discriminator type. It is compatible if each parameter name is defined in the type as
a formal parameter. A formal parameter has a name and a bean utility or a bean
shell expression and a type. The type information is used to instantiate the expected
Java object.

Currently formal parameter types are either wrappers of primitive type, strings, or
reference codes.

5.2 Best Practices
The following advices simplify requirements specification. The information should be
available in tabular form and not be spread in various documents.

• Clearly identify all derived attributes, the triggers for their computations and the
formulas.

• Clearly identify all control attributes and the set of attributes they manipulate.

• Clearly identify all attributes, which are dynamically enabled or disabled.

• Verify the completeness all formulas for all control attributes. All dependent
attributes should be identified.

The following advices streamline the implementation of the above identified
requirements.

• A formula is realized as a function provided through a service. This approach
respects the service oriented architecture paradigm advocated in this document.

• The trigger of the computation of formulas should be centralized in a formula
calculator and distributed in the business object instances. The calculator function
can be activated or disabled from the application when the use cases request it.
Computation can be performed for an individual attribute or a business object
instance.

• The trigger of the computation of the validation rules should be centralized in a
validation rules engine. The validation function can be activated or disabled from
the application when the use cases request it. Validation should be performed on a
business object and not on individual attributes. The object-oriented approach
encourages to have consistent objects.

Data Object Attributes 11/17

6 Architecture

6.1 Meta Model Approach
As discussed above, the architecture must provide fine grained initialization and
computation mechanism if attributes can be enabled and disabled dynamically in the
application.

The meta model is either available as runtime engine or hard coded in the application.

The choice of a variant is a tactical decision based on the requirements of the
application. We suggest to use a meta model and to avoid hand coding as soon as a
few hundreds of rules or attributes are identified.

The meta model defines the following entities.

• Attribute: A attribute is a property with a value and a type. Each attribute belongs
to exactly one business object type.

• Business Object Type: The class defining a business object type. A type contains
attributes.

• Context Definition: Set of attributes an attribute needs to compute its state. The
state is used to define the set of currently controlled attributes. Only controlled
attributes are triggered when the attribute changes. The context is also used to
activate attributes added to the set of controlled attributes and to deactivate the
ones removed from the set.
The dependent relation defines the static set of all attribute possibly controlled.

Illustration 1 Attributes Meta-Model

12/17 Derived Attributes

• Context: The current values of all attributes defined in a context definition.

• Formula: An expression to execute. All referenced attributes in the formula are
defined through a path expression. Formulas are used to initialize attributes when a
new business object is created and to compute the value of derived attributes.

• Path: A expression using positional notation to define the path from the current
context to a set of attributes.

• Predicate: A predicate is used to compute the current set of controlled attributes. A
predicate only needs access to the attribute object and its current context.

• Trigger: A trigger is a relation between a control attribute and a derived attribute.
All formulas defined on the derived attribute will be executed each time the trigger
attribute changes. The trigger defines the path to the derived attribute. The path can
contains collections without index to indicate that all items of the collection are
part of the set of derived attributes.

• Validation Rule: A validation rule checks that an attribute has a consistent state.
An attribute can have a set of validation rules.

A user interface meta model could be defined to provide the following information,
which is not part of the business layer meta model.

• Is an attribute visible or not?

• Is an attribute mandatory or not?

• Has the attribute a range check associated with it?

6.2 Attribute Functions
An attribute function is a computation executed on behalf of a business object
attribute. A function can be associated with a context. A context has two dimensions.
The first dimension defines the set of attributes belonging to it. This dimension is the
static definition of the context. The second dimension defines the value of each
attribute in the context. This dimension is the runtime definition of the context.

Attributes functions are used to perform the following activities.

• As an initialization formula they compute the initial value of a given business
attribute. The formula can be constrained through a context meaning multiple
formulas can be defined as initialization function. The contexts must be disjoint.

• As a computation formula they compute the value of a derived attributes when one
of the trigger modifying the result is changed. The formula can be constrained
through a context meaning multiple formulas can be defined as computation
function. The contexts must be disjoint.

• As validation rules they verify that the new value of an attribute respect the
business rules defined on the domain model. The validation rules can be
constrained through a context meaning multiple validation rules can be defined as
validation function. The contexts must be disjoint.

• As a range type they define the range of legal values for an attribute.

Each attribute function needs a context in which it performs its computation. The

Data Object Attributes 13/17

context contains the following information.

• The list of all attributes with their values in the domain context where the function
is executed. Because this information is complex to retrieve in a tree containing
multiple instances of the same type the list of attributes and their value is coded in
the formula itself and not part of the meta-model.
An elegant approach is to use the bean utility package to introduce a flexible
programming model.

• The attribute itself, its old value and its new value. This information allow the use
of the same formula for multiple attributes.

• The context of the attribute, meaning the business object instance owning the
attribute instance.

The framework must construct the context for any attribute function defined in the
system. To allow such a feature it must be able to retrieve from an attribute function
the set of attributes used in the function. Currently it uses the services of the Jakarta
bean utilities to perform this task.

The meta-model associates formulas with attributes. The same mechanism is used to
connect initialization rules, computation formulas, validation rules and definition of
sets of dependent attributes. The framework must now provide the algorithm to select
the correct set of formulas during runtime. The algorithm is as follow.

1. Compute the context for the selection of formula of a given type. The context is
defined through the set of attributes and their values. The values are computed
using the bean utility expression defined in the context. The result of the
computation is a hash map. The framework requests that all contexts for the
selection contains the same set of attributes.

2. Select the set of formulas defined for this context. For each context the values of
the attributes are compared with the ones defined in the formula context. If all
values are equivalent the set is selected. If none is found the default set is selected
if defined.

3. Execute the set of formula returned in the previous step. The order of execution is
not defined. The parameters of the execute method is the business object instance,
the name of the property. No other parameters are passed. It is not the
responsibility of the computation framework to provide mechanisms to parametrize

6.3 Registration of Formulas
Each computation is declared as an instance of a functor. The functor is registered for
a given business object type and a property. A convenience method registers the
functor for all properties defined in a business object type.

A special version of functors can infers if they should be fired or not. This kind of
formulas are used for dynamic derived attributes. This variant is application specific
and is hidden from the derived attribute manager.

6.4 Registration of Business Objects
A business object tree is registered to the manager when the derived attributes should

14/17 Derived Attributes

be computed. The manager uses a register functor and the available visitor to traverse
the tree and register itself on each relevant property in each visited node.

6.5 Visitors
The difficulty with the visitors is that the derived attribute manager must manipulate
them without knowing their class. The solution is to use the reflection package to call
the visitor accept method of the business object instance and give the visitor as
parameter of the method. The operations specific to the manager are encapsulated in a
functor. The visitor with functor interface provides the mechanisms to connect the
package specific functors to classes unknown at compile time.

Here the details of the algorithm.

• Each business object class register its visitor, which must implement the interface
“Visitor With Functor”. The derived attribute manager defines the functor it needs
to fulfill its responsibilities.

• If an instance of the visitor class does not already exist, it is instantiated the first
time it is needed. The functor is set based on the function, which should be
executed.

• The business object to traverse is inspected and its accept method is inferred with
the help of the introspection package. The method is called with the visitor as
unique parameter.

6.6 Code Generation
The meta-model describing the business objects, their attributes and all formula is also
the reference model used to generate code for the validation and computation of
attributes. The code generators should provide the following artifacts.

• Validator forms for the Jakarta validation framework

• XML declaration file for all rules and their context.

6.6.1 Jakarta Framework Integration
A goal of tremendous importance for an architect is to reuse existing components
instead of reinventing the wheel. A well-known validation framework is available
from the Apache foundation.

The framework uses a declarative approach based on a XML configuration file. This
configuration describes the meta model of business objects and properties and the
defined validation rules.

6.7 User Interface Meta Data
The user interface is interested in attribute characteristics.

• Is an attribute active? Only active attributes should be displayed.

• Is an attribute mandatory? Mandatory attributes are often graphically identified.

• Is an attribute read-only or can it be modified? Only changeable attributes have
editable fields.

Data Object Attributes 15/17

7 Solutions

7.1 Pragmatic Approach without Meta-Model

7.1.1 Concepts
Often the implementation of a meta-model is an expensive task and should only be
performed if the additional functionality is required in the application. Otherwise a
hard coded approach should be preferred.

The initialization and preferences visitor are hand coded. The formulas are also
written by hand. This approach has limitations as soon as the number of attributes and
rules in the system becomes high.

7.1.2 Realization
The complete meta-model is coded in the derived attribute manager responsible to
compute the derived attributes. The formulas are declared in services following the
SOA convention.

• Initialization and preferences settings are implemented as a set of visitors. These
visitors are applied to a business object subgraphs upon creation. This approach
works for any subgraph of business objects.

• Each formula is defined as a method in a service. Some applications delegate the
method to an application specific domain defining an homomorphic hierarchy to
the domain model.

• Each trigger of a formula, is mapped to a change event listener registration of the
involved attribute in the business object after its creation. This mechanism
computes all derived attributes and is compatible with Java bean conventions.

• A special case is when a control attribute changes its value. A initialization method
must exist to deactivate the no more controlled attributes if necessary and
initializes the newly activated or controlled attribute. The trigger mechanism is the
same as the one used for formula computation.

This approach can only be maintain if the documentation of all attributes and their
formulas are well-documented and cross-references are provided for efficient
traceability. The documentation replaces the explicit meta-model and should have the
same level of detail and quality.

7.2 Persistent Derived Attributes

7.2.1 Concepts
Offline reporting tools and external systems reads information from the database.
These applications have a need to display derived attributes values without
implementing the business logic used to compute them.

Therefore such requirements require that derived attributes are stored in the database
each time they are computed. Derived attributes are computed each time one of the
trigger attributes is modified.

16/17 Derived Attributes

7.2.2 Realization

7.3 Replication

7.3.1 Concepts
The replication component provides functions to replicate graphs of business objects
and their attributes. The replication operation can be a simple copy of an object, or a
partial replication of attributes as found in copy as, renew, and initialization based on
a prototype. The semantics of these functions are defined in the business requirements
of the application.

These services are often fine tuned during the life cycle of the application. The chosen
implementation should allow efficient modifications of which attributes are
replicated.

7.3.2 Realization
The realization of the services is heavily based on the use of the visitor pattern and the
methods provided through the code generator. All business objects have a deep copy
function. The replication server first creates a clone of the graph to replicate. Second a
visitor is used to modify selected attributes or reset their values to default ones. The
visitor implements a subtract algorithm. Attributes which are not replicated need
update. This approach is efficient if the majority of the attributes are simply copied as
is.

Each kind of replication is implemented as a visitor class. A common abstract class is
provided to provide common features. These features insure that the replicated graph
of business objects is recognized as a new set of business objects in the persistence
framework.

The replication manager implements the most complex business requirements. For
example it generates a new name for the replicated root, adapt date ranges, insert the
replicated graph in an existing business object. These operations often use parameters
provided by the client. The replication manager is the single entry point for the
replication component. All others classes are private to the package.

8 Glossary
CORBA Common Object Request Broker Architecture

J2EE Java 2 Enterprise Edition

J2SE Java 2 Standard Edition

JDK Java Development Kit

JRE Java Runtime Engine

MDA Model Driven Architecture

SOA Service Oriented Architecture

UML Unified Modeling Language

Data Object Attributes 17/17

9 References
The framework could only be realized with the help of a set of wonderful open source
projects. We are grateful to the Apache foundation and the Jakarta project for their
powerful applications and libraries.

BeanUtils manipulation library for Java beans
http://jakarta.apache.org/commons/beanutils

Validator validation framework
http://jakarta.apache.org/commons/validator

Illustration Index
Illustration 1 Attributes Meta-Model 8

http://jakarta.apache.org/commons/beanutils
http://jakarta.apache.org/commons/validator

	1 Introduction
	2 Assumptions
	3 Use Cases
	4 Concepts
	4.1 Attribute Kinds
	4.1.1 Regular Attributes
	4.1.2 Derived Attributes
	4.1.3 Control Attributes

	4.2 Validation Rules
	4.3 Formulas
	4.3.1 Initializations
	4.3.2 Derived Attribute Formulas
	Aggregations
	Propagations
	Computations

	4.3.3 User Interface Hooks

	4.4 Business Object Initialization
	4.4.1 Creation of Business Objects
	4.4.2 Initialization
	4.4.3 User Preferences
	4.4.4 Reset Default Values

	5 Meta-Model Definition
	5.1 User Input
	5.2 Best Practices

	6 Architecture
	6.1 Meta Model Approach
	6.2 Attribute Functions
	6.3 Registration of Formulas
	6.4 Registration of Business Objects
	6.5 Visitors
	6.6 Code Generation
	6.6.1 Jakarta Framework Integration

	6.7 User Interface Meta Data

	7 Solutions
	7.1 Pragmatic Approach without Meta-Model
	7.1.1 Concepts
	7.1.2 Realization

	7.2 Persistent Derived Attributes
	7.2.1 Concepts
	7.2.2 Realization

	7.3 Replication
	7.3.1 Concepts
	7.3.2 Realization

	8 Glossary
	9 References

